Swapping Methods for Fleming-Viot Estimators of
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The primary motivation of this thesis is to explore improvements to computing meth-

ods related to quasi-stationary distributions—Ilimiting distributions conditioned on non-
absorption to some absorbing subset that is reached almost-surely.
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1 Preliminaries

The central objects studied in this thesis are Markov processes.

Definition 1.1. Given a filtered probability space (Q,F , (F:):e1, P) and a totally ordered
index set I, a Markov process taking values in a measurable space (S, S) is a sequence of
random variables (X;); that satisfy the Markov property

P(X, € A|F,) = P(X, € A|X,) YA€S,1>s

In the literature, a Markov chain is usually a Markov process where either / or S is
discrete. In this thesis, we will work in a setting where S is finite and / will be either R™
or N; the distinction will be clear.

1.1 Discrete-Time Markov Chains

In this work, we will usually assume that our Markov chains look the same over dif-
ferent times, meaning that the conditional distribution defined by the Markov property is
time-invariant, so that

P(X, € A|X,) = P(X,_, € A|Xy) = P'~*(Xo, A)

We call these Markov chains homogeneous, and the transition kernel P'(x, dy) is usually
denoted the semigroup of X, as it is a semigroup homomorphic to / under matrix multi-
plication (or more generally, kernel integration). When we work in discrete-time, we write
the matrix

P,y =P (x,y) = P(X; = y|Xo = x)

Then by conditioning on the intermediate states, we have, (where we denote P,(A) =
{P.(A)du(x) and extend to expectations as usual)

Eulf(X))] = uP'f

In the study of discrete-time Markov chains, a few conditions on a chain are essential
for nice behavior. It is important to note that these conditions may be necessary to make the
general statements relating to ergodicity which are found here and in In particular,
if we generalize to chains over possibly infinite countable state spaces, we need a positive
recurrence condition for the Mean Ergodic Theorem to hold (see [7]] Theorem 4.1.14).

Definition 1.2. Given a Markov chain with transition kernel P'(x,y), a state i is said to
be accessible from a state j if s € I such that P°(i, j) > 0; we write i — j. Ifi —
jand i «— j, we write i < j and say that i and j communicate. Communication is
an equivalence relation, and the distinct classes of states that communicate are denoted
irreducible classes. A chain with one irreducible class is said to be irreducible.

Definition 1.3. A probability measure n is a stationary distribution if 1P = ©



It can be shown that every irreducible chain has a unique stationary distribution. A
natural question to study is the sense in which samples of X converge to a stationary dis-
tribution. The first notion is the convergence of the marginals; for nicely-behaved Markov
chains, we would like to know how uP" — .

When I = N, we may worry that states in the chain will cycle, in some suitable sense,
so that the semigroup doesn’t exhibit sufficiently well-behaved mixing properties. The
period of a state x is ged{n|P"(x,x) > 0}. The period of a state is a class property, and
classes/chains with period 1 are said to be aperiodic. The period of an irreducible chain
corresponds to the multiplicity of the eigenvalue 1 of the transition probability matrix.

Theorem 1.4. If a Markov chain with transition probability matrix P is irreducible and
aperiodic, then IM € N, & > 0 such that for all yu € P(S)

[uP" = < 2(1 — e)lir]
Proof. This is a special case of Corollary 3.1.16 in [7]. [

Another way that samples of X can converge to the stationary distribution is in empirical
measure, which is defined to be m(X,) = + Y d¢x,}- Equivalently, if we choose a time M
uniformly in [N] := {1,..., N}, this is the law of X,. The sense in which this convergence
holds is in probability, under the (metrizable) topology of weak convergence (see for
a full discussion).

1.2 Continuous-Time Markov Chains

Continuous-time Markov chains (CTMC), the analogs of discrete time Markov chains,
require some extra time-regularity conditions. There are several options for defining these
processes, each of which is valuable in its own right, either for heuristics, modeling, or un-
derstanding the chains from a dynamical systems perspective, and have varying usefulness
in defining nonlinear CTMCs. We start with the most general characterization.

Definition 1.5. A Markov process {X;},c; on a probability space (Q,F,P) is called a
continuous-time Markov chain if it takes values over a discrete space, and for almost
every w € Q the map t — X,(w) is right continuous with left limit.

The right continuous with left limit condition is often called cadlag in the literature
(from the French “continue a droite limite a gauche”).

Proposition 1.6. The distributions of cadlag processes are completely determined by its
finite-dimensional distributions, so the Markov property can be restated as

P(X,,, = Xn1| Xy, = Xpoo o, Xpy = x1) = P(X,,,, = int1| X, = Xn)

n+1

for any increasing {t};*| and {x};Z].

As before, we denote Py, = P'(x,{y}) = P(X; = x|Xo = y) and let P(r) be the matrix
{P,,(r)}. As before, the general characterization of a stationary distribution P, (X, € A) =

1(A) extends to
nP(t) =n



Definition 1.7. A matrix Q is called a transition rate matrix, or just rate matrix if Q1 = 0
and Q.y, > 0 when x # y. A Markov process X; has rates Q(t) if, for every t,h > 0,
x,yes,

P(Xipn = y[X; = x) = Oxy + Qx,y(t)h + o(h)

Then it can be shown that, thinking of P(¢) as a Lie group action on the space R¥,
the evolution laws of homogeneous chains become homogeneous ODEs (and similarly for
inhomogeneous chains):

Theorem 1.8. If a homogeneous Markov process has rates Q(t) = Q, its marginal distri-
butions u(t) are just integral curves of the vector field Q starting at u(0), so that P(t) = €'C,
and P satisfies the relationship

d
d_tP(t) = P(1)Q

d
% P(t) = OP(1)

These are called the Kolmogorov forward and Kolmogorov backward equations, respec-
tively.

Given a discrete-time and discrete-state Markov chain, a basic construction is the gen-
erator, which measures expected increments at different states:

Lf(x) = B[f(X1) — f(Xo)[Xo = x]

Obviously, the form of the generator leads to an alternate characterization of stationarity
L*n = n. Generators are most useful in continuous-time, where they are defined as fol-
lows:

Definition 1.9. Given a continuous-time Markov process X, that takes values over a Polish
space P (discrete, countable, or uncountable), the generator of X, is an operator L, defined
on some subset of C*(P), as

L7(x)  tim P ) = F(X0)1Xo = o]

—0 0

The space of functions for which £ is defined is of paramount importance. Typically,
we want it to be defined over a subset of functions that is suitably large as to separate
points; since we will be working primarily over finite spaces, we gloss over this detail. We
also have two important statements, that are unproven here but which have some heuristic
importance.

Lemma 1.10. Given a homogeneous Markov process X; over a finite space S,
(a) The generator L of X, characterizes the process.
(b) Forany fe C*(S), Y, = f(X,) — Sé) Lf(X;)ds is a martingale

This result will extend to general Polish spaces under further conditions on .£, and the
statement (b) on Y; might be qualified to a local margingale property.



1.2.1 Nonlinear Continuous-Time Markov Chains

1.3 The Perron-Frobenius Theorem for ML Matrices

The next result in linear algebra is critical in characterizing the existence of stationary
distributions (and, as we will see, Quasi-Stationary distributions) in the finite-state case.
First, we define Metzler-Leontief (ML) matrices:

Definition 1.11. A matrix R"*™ is called an ML matrix if its off-diagonal elements are non-
negative. If for any i # j, there exists N > Q0 and iy, ...,iy_ that serve as a path of strictly
positive rates from i to j, the matrix is said to be irreducible. Rigorously, q(ix,ix+1) > 0
foranyk < N.

Then we have following theorem, which is crucial for existence and uniqueness state-
ments:

Theorem 1.12 (The Perron-Frobenius Theorem for ML Matrices). Suppose A is an irre-
ducible n x n ML matrix. Then there exists a real eigenvector r whose real part is maximal.

(i) Left and right eigenvectors associated with r have entries strictly positive, and are
unique up to constant multiples.

(ii) Any other eigenvector ro of A satisfies Re(ry) < r.
(iii) r is a simple (multiplicity 1) root of the characteristic function of A.

(iv) r < 0 iff there exists some R" 3y = 0 such that Ay < 0 with inequality in at least
one entry.

(v) if we denote the right and left eigenvectors of (ii) as v! and w and normalize such
that vi'w = 1, then for any t > 0, there exists T < r such that

eAz _ e”WVT + O(e‘rz>

Proof. For a proof of this result, see Page 46 of [6]. [

In the theory of ML matrices, r is typically denoted the Perron-Frobenius eigenvalue
of A.

2 Quasi-Stationary Distributions

We will first explore the general characterization of a quasi-stationary distribution,
which holds over general time and spatial constraints; many of the conclusions that hold
for stationary distributions have discrete-time analogs. The issue in developing such exten-
sions, underscored in §I.2.T]is that the dynamics associated with Quasi-Stationary Distri-
butions are inherently nonlinear, so MCMC methods for computing them is difficult, and
relies on the development of linear chains that approximate the nonlinear dynamics.

Consider a continuous-time Markov process X = (X; : ¢t > 0) taking values in state
space S endowed with o-algebra B(S). We will be concerned with the behavior of our



Markov chain within some measurable connected subset D, denoting our forbidden states
0 = S\D. Let T denote the killing time T = T, = inf{t > 0 : X; € 0}. The quantities of
interest will depend only on X7, so without loss of generality we set X; = X; whent > T.
We will assume that the process is almost surely killed so that P,(T < o0) = 1.

2.1 Definitions

Definition 2.1. A probability measure v € P(D) is said to be a quasi-stationary distribution
(QSD) of X on D if for any t € [0,0) and A € B(D)

P,(X(¢) € A|IT > t) = v(A) (2.1.1)
or equivalently
P,(X(t) e A, T > 1) =P,(T > t)v(A) (2.1.2)
Theorem 2.2. [fv is a QSD, then 3a(v) = 0 such that
P,(T > 1) = e )
Where we note that @ = 0 if and only if v is a stationary distribution.

Proof. First, we notice that for any g € M™ (D), monotone convergence and (2.1.2) yields

Ev[g(X(t))]]-T>t] = V(g)PV(T > t)

Setting g(x) = P(T > s5) we have E, [Ex(y[17>s]17>¢] = P,(T > s)P,(T > ¢). Finally,
we use the Markov property to see

P(T > 5+ l‘) v []1T>r+s] =E, [1T>1E []lT>r+s‘7:t]]

=E
=E, [Ex(t) []1T>s]]lT>t:| = PV(T > S)PV(T > t)

Since T has the memoryless property, it must be exponentially distributed. Of course,
if @ = 0, the process is never killed, so the quasi-stationary distribution and stationary
distribution coincide. u

We denote «a the decay rate or exponential decay rate.

2.1.1 Hard-Killing and Soft-Killing Regimes

While the preceding section identifies specific absorbing states, these states and their
structure is irrelevant to the distributional properties of a QSD. This identifies two distinct
ways of characterizing the QSD, which are in some sense the same but have heuristic and
algorithmic implications. In the hard Killing regime, chains evolve and upon entrance to an
absorbing state, never exit; they are in a loose way “dead” to us, hence the term “killing”,
and their sample paths are irrelevant to the QSD. In the soft killing regime, we imagine



that a Markov chain evolves and is independently killed according to a state-dependent rate
c(x). At the hitting time of ¢(x), we decide to kill the sample.

Of course, the hard killing regime can be turned into an equivalent soft killing regime
by restricting the state space and evolution of particles, and taking c¢(x) to be g(x, 0), or
by setting ¢ = o0 - §y (we are glossing over some details for the extension of the killing
rate to infinite values here). Alternatively, a soft-killed regime can be turned into a hard-
killed chain by identifying an absorbing state. Hard-killing is typically more useful from a
pedagogical perspective when the states that we are conditioning on are explicitly defined,
and soft-killing is useful for notation, calculations, and generalizing to other problems that
are not QSD problems (or to diffusions).

2.2 Characterization of the QSD

We remember a quasi-stationary distribution is the limiting distribution of a Markov
chain conditioned on staying within a region, again call it D < S. Let,

c(x)_{oo x¢D

0 xeD

Then, we have

P.(X, € AT >1)=Py(X,cA,X,eDY0<s<1)=E, [e*%c()‘s)dS]lA(x,)]

since the first expression will be 1 when X; remains in D before ¢ and zero otherwise
(although X is allowed to leave the boundary in some negligible time, this is also negligible
over path-space). Therefore, we can find a limiting distribution by taking

E, [e* Joe(x:)ds (X,)]

Ht(x,A) = ,
E, [e— o c(XS)ds]

— 0(x,A)

That quasi-limiting distributions are quasi-stationary—and a discussion on ¢(x), which in
stochastic control representations is called the cost function—can be found in [3)]. Inter-
preting both 6, and @ as measures/kernels, it can be shown that § 6,(y, A)8(x, dy) = 6(x, A),
which illustrates the quasi-stationarity of 6.

We will start by looking at stationary distributions. From the general expression for the

infinitesimal generator £, we can reach a characterization of stationarity. A weak charac-
terization for a stationary distribution is

| seomtan) = || sorpatdvimtan)



where P, is the transition kernel for the process over some time interval A. Then,
0= [|[ soreatean ~ s
= [ | 1r0) = £ Patxayin(ay

Dividing by A and taking the limit as A — 0.
0= fo(x)ﬂ(dx)
= [ Leatas

and we get the result £*7(x) = 0. We note that = relies on a change of variables to some
reference measure over the space and then use of the L? adjoint.

We now find a similar result for quasi-stationary distributions, where we need to worry
about losing mass. In particular, we have seen that when a process is evolved starting from
a quasi-stationary distribution v, without conditioning, it will lose mass exponentially [3]],
so that P, (T > 1) = ™, where T is the hitting time, P,(A) = ({P,(A)dv, and @ may
depend on v.

Lemma 2.3. A quasi-stationary distribution 6(dx) = 0(x)dx, up to normalization, will be
characterized by —L*6(x) = ab(x), where « is the decay rate and L* is the L* adjoint of
the infinitesimal generator.

Proof. First, we use exponential decay to attain the expression
E, [e_5§ f(X»-)deLA(XA)] = eBg(A)

which we reached from our earlier characterization of the QSD. By evaluating over C test
functions we have

E, [e_S§ c(x‘)dsf(XA)] =Eo[e™ " f(Xo0)]

and the same process from the regular stationary distribution yields
0=E, [g* B eOdsT £(x,) — £(Xo)] — F(Xo) [e, @ e(X)ds _ e,wﬂ

X — ilim — = J[f(x)@(x)dxng [f(xo) (1 — lim[1 +a% —a2§ + ])]

- J F(x)L*0(x)dx + a f f(x)0(x)dx

which yields the desired expression. We justify moving the limit inside by dominated
convergence. ]



2.3 Existence and Uniqueness over a Finite State-Space

Consider now that the continuous-time Markov chain X; is over a finite state space. In
the language of [S)], we assume some transition rate matrix Q with the following structure:

~ 0 0

o=l o
where the first row and column represent ¢, the absorbing state. Our forbidden states do not
communicate, and our allowed states are absorbed with rates a. Our internal rate matrix Q,

is assumed to be irreducible (otherwise we have issues with the uniqueness of our QSD).
Then we have the following compound rate matrix:

~ [ o 0
Q - |:(2n—la Qn:|

Seen inductively below.

~x [0 0 Jfo o] [ o 0
Q 1Q - [Qn—Za Qn_]] |:a Q] - [Qn—la Qn]

Then with ﬁ(t) as the transition probability matrix of the absorbing chain at time # > 0,

P(1) = i o
n=0

n!

The following lemma is clear for diagonalizable rate matrices, but holds for all matrices

Lemma 2.4. If A is an eigenvalue of matrix A associated with an eigenvector v, then e' is
an eigenvalue of matrix e* associated with the eigenvector v.

Now we can characterize the Quasi-Stationary Distribution as a solution to a Linear
Algebra problem. We start by finding the forward generator for X,.

Proposition 2.5. The generator for a discrete-state process with transition rates q(x,y) is
Lf(x) = > q(xy)[f ) = f(x)] (2.5.1)
yeX

Proof. Here, we use the fact (via Taylor expansion) that for i # j, P;(X,, = j) = q(i, j)h +
o(h), so we have

Lf(x) = lim ;
= lim (q(x,y)6 + 0(9))[f(y) — f()]
6ﬁoy¢x 0
= Y g 0) ~ ()]

10



Using the properties of rate matrices, we also have the form

Lf(x) = > q(xy)f ()

yes

so Lf = Qf, identifying f with a the column vector. This will allow, in simple cases, for
us to compute the QSD using linear algebra (see Prop. [2.§). [

Corollary 2.6. The adjoint of the generator L, given transition rates q(x,y) is:

L¥f(x) = Y a0 0)[f ) = F@)] + £(x) Y[a(v ) — q(x.y)]

YEX V#EX
Proof. For a proof, see the general construction in L?(p) in [

Returning to the eigenvalue problem, we have the following result, which identifies the
importance of the generator £ and its adjoint.

Theorem 2.7. Suppose the Markov process X is irreducible on D, then

(i) A vector ¥(x) is an eigenvector for L if and only if v(x) = p(x)¥(x) is also an
eigenvector of L* with the same eigenvalue.

(ii) There exist a real eigenvalue of L and L*, A > 0, for which r > A for any eigenvalue
r# A

(iii) There exists a unique quasi-stationary distribution v associated with this eigenvalue

(iv) There exist eigenvectors W and ¢ of —L and —L* respectively, associated with the
eigenvalue A._¢ is the unique quasi-stationary distribution and (¢, 1) = 1. For any
pe M (D), (¢) = % is an eigenvector of — L associated with the same eigenvector
A

(v) The function  characterizes the exit/decay rate from D, or; loosely, the rate at which
mass leaves conditioned on its origin

lﬁ(X) = tll>r£lo e/lth(Tg > l‘)

Proof. (i) Notice that £#(v) = 400 — 200D _ g5y)

(i) By the assumption of irreducibility, Q is a ML matrix, and thus by Theorem [[.12]
Q has eigenvalue r > 0 associated with eigenvectors v/ and w (whose entries are

positive). Then if A = —r, we notice:
Lv(x) = Y q(xy) ) = v(x)] = Y q(xy)v(y) = —rv(x) = av(x)
yeS yeS

11



Then since £ and L* have the same eigenvalues:
A¢oy = 3IS:S(L-AU)=1
— (L*—ADS* =1
— A¢orx
by (i) we are done.

(iii) This can be proven in a number of ways. The first, and simplest way, is to use the
characterization of the QSD in Lemma 2.4 of [3]].

(iv) If we set y = v and ¢ = w from (ii) and Theorem|[I.12] then we can see that ¢ is an

eigenvector of —£: Then if 1 = —r, we notice:
—Lv(x) = = D1 a(xy) [v) = v(x)] = = Y a(xy)v() = —rv(x) = Av(x)
yes yes

Then since £ and L* have the same eigenvalues:
Agoyp < IS :S(L-A) =1
= (LF¥-ADS* =1
= A& opx
by (i) we are done. Then also ¢ is an eigenvector of —L*:
Vo= = w=0"=0%="Lry
(v) See [3]
|
The following proposition is not immediately obvious from the typical presentation of
the generator, and allows for sanity-check computations of simple QSD.
Proposition 2.8. If the rates q(x,y) correspond with a rate matrix Q,
DA E) = F(0)] + F(R)h(x) = (Q + H)(x)
y#EX

Where H is a diagonal matrix with entries H(x, x) = h(x)

Proof.
D) = F@] + F)Rx) = q(u) ) — £(x) Y a(xy) + f(x)h(x)
= q(x.y)f() + f(x)q(x.x) + f(x)h(x)
= Y 0)f0) +h(x)f(x) = (0 + H)()
yes

Applied to Lf(x), we see L = Q, so a QSD, which is an eigenvector of L*, will be an
eigenvector of Q* = QT when restricted to allowed states, and 0 otherwise.

12



3 Stochastic Control

The primary objects in Stochastic Control relevant to the study of QSDs are twofold: a
minimal cost function, whose optimal policy is related to the quasi-stationary distribution
for the chain, and the optimal ergodic cost, which relates to the decay rate. In this section,
we begin by introducing both objects in the discrete-time setting, which we generalize to
CTMC:s in the following section

Consider the following setup, found in [J5]]:

Take {X, }nen, a discrete time Markov chain over finite S with Xy = x

A time horizon N € N, which is trivially sufficient for well-posedness of the opti-
mization problem.

e A control space U, which can be interpreted as the set of controls that are available
to minimize cost. U is a Polish space (a metrizable, separable topological space).

e A running cost, which contributes to total cost throughout the living time of the
Markov Chain, ¢ : § x U — [0, c0). This must be a tightness function over U [3]],
ie. foreach x € S, M € [0, o0), the sublevel sets {u : ¢(x,u) < M} < U are compact.
We include a terminal cost F' as well.

e A map of controlled transition probabilities which depend on the chosen control
p: 8?2 x U — [0,1] which represent a discrete-time Markov transition matrix for
each control, under the assumption that transition probabilities are continuous in
control (i.e. u — p(x,y|u) is continuous for any x,y € §).

e The policy n representing the time and state-dependent control. 7 = {g;};<x Where
gi:S—-U.

The finite-time problem asks the control to perform the following optimization, where U; =
n(X;) = gi(X;), and X; follows transition probabilities governed by p:

N—1
V(x,i) = inf B, lE c(X;,Uj) + F(XN)l

j=i

Such prototypical stochastic control problems are typically solved backwards using dy-
namic programming, noticing the following equality, formally described in [3]:

V(x,i) = inf lc(x, u) + Zp(x,y|u)V(y,i+ 1)1

ueU
yes

The second object that is important in the study of QSDs is the optimal ergodic cost, which
will be interpretable as the decay rate:

T n—oon

1 n—1
y = inf lim —E" [Z c(X;, Ui)]
i=0

13



3.1 Forward Ergodic Control

There are two main ergodic control representations that are discussed in the study of
QSDs, one related to the generator £ and one associated with its adjoint L*. Consider a
modified process X, with new, controlled, jump rates b = {b(x,y)}.yes. These modified
jump rates are constrained by an admissibility condition:

Definition 3.1. A control process is admissible if, for any xo € D, P, (X, € DVt > 0) = 1.
We denote the class of admissible control processes A.

Remark 3.1.1. It is not difficult to see that a control process is admissable iff b(x,y) = 0
when x € D,y ¢ d.

The formulation of the controls requires consideration for flows into the boundary under
the control scheme. As such, we denote:

q(x,0D) = Y q(x.2)

x¢D

Then consider the following cost problem:

"% . b(X
o) ~timsp 18, | [ axoo0)+ ¥ aoz (2220 |a
0

I=w y#X;,yeD Q(Xl’y)

where £ (x) = xlogx — x + 1 for x = 0 and .Z(0) = 1. We notice two terms: the
first term penalizes the control for being near the boundary, and the second term penalizes
the control for varying from the original dynamics, similarly to relative entropy, or KL
Divergence. The optimal cost is infjc 4 J(xo, b). Theorem will give a characterization
of J in terms of the below Bellman equation:

y=inf{ S beyr) T+ Y q(x,y>z(”("’y))+q<x,w>}

beA y£x,y€D y#x,yeD q<x’ y)

(3.1.1)
Theorem 3.2. Suppose the process X, is irreducible on D. Then

(i) If A and ¥ are as given in Theorem and define ¥ = —logy. Then (A,¥) is a
solution to the Bellman equation (3.1.1).

(ii) Solutions to the Bellman equation are unique in the first variable, and unique in the
second variable up to constants.

(iii) If (A,'¥) is a solution to the Bellman equation, then a process Y, with the following
control rates:

0 xeD,y¢D
b*(x,y) = < q(x,y)e?@O=Y0)  xyeD x#y (3.2.1)
A+ g(x, x) x,yeED,x=y

is a Markov process with unique invariant measure y = ¢y, where ¢ and  are from
Theorem[2. 7
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(iv) Vxoe D, J(xp) = A
(v) The control defined in (iii) is optimal, in fact, for any xy € D,
| T
A= lim —E, UO lq(Y,, D)+ ). q(Yt,y)f(e\P(m_\P(y))] dt]
y#Y,yeD

Furthermore, the eigenvalue A can be determined from the invariant measure y by
the formula

ﬂ=2l61(z,813)+ > Q(z,y)i”(eu’(y’)‘"(”))]u(Z)

zeD y#z,y€D
Proof. Recall that ¢ is a solution of

Ly(x)+Ay(x) =0 xeD
Y(x) =0 xeS\D

If we define ¥ = — log ¢, then by using our characterization of the infinitesimal generator
for discrete-state Markov chains, and multiplying by e~*®), we have

0= > q(xy) [e—‘f’()')_e_‘l’(x)] £ 4 S gl y)e )

y#x,y€D y#x,y€0D
= Z q(x,y) [ef‘y(y”\y("‘) - 1] + A — g(x,0D)
y#x,yeD

Then we use the trick that, for any a € R,

e —1= fll)rzng{abJri”(b)}

So with a = ¥(y) — ¥(x), we have

A= 3 g | jnt (0.190) - W]+ 2100} + g(x.0D)

y#x,yeD

= inf { P ERLIERIINIOER JEIEY q(x,y)f(b(x,y))Jrq(x,@D)}

) =
b(xy)=0 x#y,yeD y#£x,y€D

Finally, we find the optimal control b by substitution b(x,y) = g(x,y)b(x,y) supported on
nonabsorption (i.e. b : (x € D,y ¢ D) + 0). So (i) follows. [

3.2 Backward Ergodic Control

Now consider another modified process X; with new, controlled, jump rates b = {b(x,y)}.,es.
These modified jump rates are again constrained by an admissibility condition:

15



Definition 3.3. A control process on the backward dynamics is admissible if, for any xo €
D, P, (X, € D ¥Vt > 0) = 1. We denote this class of admissible control processes A*,
which is independent of xo by irreducibility.

Remark 3.3.1. We again notice that a control process is admissable iff b(x,y) = 0 when
xeD,y¢d.

The formulation of the controls requires consideration for flows into the boundary under
the control scheme. Now, since £* has a Oth order term, we need an additional term on our
running cost, we define

c(x) = q(x,0D) + > lq(xy) = q(vx)]

yed,y#x

Then we consider the following cost problem:

. .
J(x0,b) = limsup %Exo f c(X,) + 2 9, X)) & (M) dt
0

f=® y#X,.yeD q(y, Xi)

where .2 (x) = xlog x—x+1 forx = 0and .Z(0) = 1. The optimal cost is infj 4+ J (X0, b).
Theorem [3.4] will give a characterization of J in terms of the below Bellman equation:

- inf{ > Bay)re) -r@l+ Y q<y,x>$(”<x’”)+c<x>} G

b *
beA y#x,yeD y#x,yeD q(y’ x)

Theorem 3.4. Suppose the process X; is irreducible on D. Then

(i) If A and ¢ are as given in Theorem 2.7 and define ® = —log¢. Then (1,®) is a
solution to the Bellman equation (3.3.1).

(ii) Solutions to the Bellman equation are unique in the first variable, and unique in the
second variable up to constants.

(iii) If (A, @) is a solution to the Bellman equation, then a process Y; with the following
control rates:

0 xeD,y¢ D
b (x,y) =< q(y, x)e®D=20)  xyeD,x#y (3.4.1)
A+ q(x, x) xyeD,x=y

is a Markov process with unique invariant measure y = ¢y, where ¢ and  are from
Theorem2.7]

(iv) Vxo e D, J(x9) = A

(v) The control defined in (iii) is optimal, in fact, for any xy € D,

1 r B
4= lim —Ey UO lc(YZH > a YL (e ‘D@))]dz}

y#Y,yeD
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Furthermore, the eigenvalue A can be determined from the invariant measure y by
the formula

A=1c@+ ), a(32)L (") u(z)

zeD y#z,yeD

4 Fleming-Viot Particle Systems

One computing scheme for finding quasi-stationary distributions (described in [8]]), is
based on a Fleming-Viot process. It is a class of Interacting Particle Systems (IPS) that
is defined for the QSD problem as follows:

Algorithm 4.1 (Fleming-Viot).

(1) Sample according to some distribution in D to determine the starting positions for N
particles whose law is the same as the unconditioned semigroup.

(2) Evolve the system while particles remain in D (and no particle is killed)

(3) When a particle is killed, replace it with a particle sampled on the uniform distribu-
tion over the other N — 1 particles.

(4) Repeat steps (2-3)

The goal of this section, then, will be to formalize the language relating to Fleming-Viot
systems, and to prove the following theorem:

Theorem 4.2. Suppose that an IPS system (see RAS), {Xt(i) }, evolves according to the rates

q with particle killing rates c(X,(i)). Further, suppose that particles are reborn according
to the distribution + SV | Sy (dx). Then

N
<% D loxo (dX),X(1)> 5 (Py(Z € dx),Z)
i=1

on [0,T] as N — co.

This scheme extends to linear functionals but may not extend to nonlinear functionals
because of the correlation of paths; in this case, N is critical, and we notice that approxi-
mations can do poorly near the boundary.

4.1 Formalism

We will primarily use the notation from [2]]. Suppose we continue in a hard-killing
regime, where particles evolve according to rates Q,, = g(x,y) over a state space S, and
that particles are killed as soon as they enter states 0D = S\D; D are the allowed states,
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and 0D are the killed/forbidden states, which are absorbing. We denote ¢ : D — R™T as
¢: x> q(x,0D). As before, we define £ to be the generator

L7(x) = lim ZE[7(X:) ~ [(Xo)lXo =

Then if X has law uP; (with P, = ¢'?), then its law at time ¢ conditioned on non-absorption
is defined, over bounded test functions supported on D, as

P Sep P (OR()
uPdp  3ep Plp(x)u(x)

We set T, f(x) = 6,T,f, and recall that a quasi-stationary distribution is a distribution sat-
isfying vT,f = vf for any test function f.

uTf =

If, suppressing the dependence on N, n™) (k) = n(k) is the number of particles in state
k, the chain 7, is a Markov chain with state space

E:E<N>:{n:D—>NO:Zn(k):N}

and the generator of this chain is, again suppressing the dependence on N, N = N®),
Since 7, has two dynamics that govern it—resampling according to ¢(n(k)) and moving
according to g(n(k),y)—N will be

NF(m) = 3 n0) lZ(f (Ti) — ) (@i + cli) o >1

ieD jeD N-—1

Where T, n(i) = (i) — 1 and Ti—, n(j) = n(j) + 1. The empirical distribution of the N
particle system is

1
m(n)(dx) = — > (k)5 (dx)
keD
Since both increasing N and increasing ¢ can improve the accuracy of the Fleming-
Viot estimate m(n,(N) ), there are two ways in which our particle system may be shown to
converge to the desired QSD:



Where convergences are in distribution. In order to show that the Fleming-Viot system
is asymptotically consistent, we will first show that with sufficiently large N, the correla-
tions between particles in the system goes to zero. We will then show that for fixed N,
the empirical measure of the system converges to the system’s stationary distribution in an
almost-sure sense. We are using the following definition of asymptotic consistency:

Definition 4.3. A sequence of estimators (6},) is said to be an asymptotically consistent
estimator of a parameter 0 if for any € > 0,

e e
i, g P(lly =01 > ) =0

4.2 Convergence of Time-Averaged Empirical Measure

We will start by showing that the empirical measure of a generic continuous-time chain
converges to the system’s stationary distribution. We do this first by showing the property
for a generic discrete-time chain with an ergodic transition kernel, using a convenient pair
measure, then use the semigroup of the continuous-time chain to generalize. The conve-
nient trick in the first theorem does not work for nonlinear operators, and is presented as a
testament to the difficulty of solving nonlinear problems, like the QSD problem. To pro-
vide bounds for the Fleming-Viot system, a more involved approach is necessary, which
will result not only in the convergence for both the normal and swapped chain, but also
rates of convergence.

Theorem 4.4. Let {X;}ien be a Markov chain with an ergodic transition kernel P and
stationary measure n. Then

| &
N
=— ) 0x, =
M Ni;x, T

almost surely.

Proof. Consider the pair measure

N
1
N _ E
m (A X B) = —N i:lé(xi'XHrl)(A X B)

Then clearly the difference between the first marginal [m"]; = x" and the second marginal
[m"], converges to zero:

_1
N

([m" ] = [m"]2)(A) [0x,(A4) = 0x,,, (A)] = 0

Additionally, by the Markov property, for any test function f

X[] )

E | f(Xix1) = X P(Xi ) f(3)

yes

So we can compare [m"],f and [m"], Pf:
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P (|[m"]f — [m"]1Pf] = )

=P ( D L)) = 3 D Py m ] (x) £ ()

28)

yeS yeS xeS§
1 RN
_p v Ef(xiﬂ) _ ﬁZZP(Xi’y)f(y) =&
=1 i=1yes

/
0‘)N|,_.
o3|

3 -
< N
0=

2
(f(X,-+1) - P(X,~,y),f(y)>>
yes
2

x1p % 1(f()(,-+1) —ZP(Xf,y),f(y))

yes

_4lfle
T &N

Where = relies on a conditioning argument; for i < j,

E Kf(Xm) = P(Xi,y)f(y)> <f(Xj+1) = P(Xj’Y)f(Y)>]

YeS yes

=E Kf(xm = P(X,»,y>f<y>> E [f(xm — 2P0 ()

yes yes

|

Then we have convergence along any subsequence, so by tightness, with probability 1,
[moc]gf — [moo]le =0

So u®(y) = >, P(x,y)u*(x) and u* = n with probability 1. |

=0

Extending to the continuous-time case, we have

Theorem 4.5. Let {X,},cr+ be an irreducible Markov chain with transition rates Q over a
finite state-space. Then

% Jf(X,)dl =7nf as.

Proof. Let Q) = sup, Zy# Oy < co. First, we know that if N, is the number of jumps of
X, in the interval (0, ¢], and N;* is a Poisson process with jump rate O, then

Oqt
< =

P(N, = n) <P(N}* = n)
n
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Then if f is finitely supported and cadlag, then any intervals for which the integral over f
is different from its left-Riemann sum must have at least one discontinuity, so,

er(x)dx - T (K| < T el S 0T ) # fi 2 ()
k=1

n

Then setting 7 = N and n = N° and dividing by T,

[ fllool{2 € [0, N] = f(2) # limy 1 f (5)}
N3

<

), S0 g D)

So for any € > 0,

|

which is summable. So by Borel-Cantelli, and the previous theorem, we are done (to be
exact, we would need to use Borel Cantelli twice, once to show convergence of the integral
to the sum, and once to show that increasing the subdivision size does not meaningfully
change the rate of convergence of the empirical measures). [

&eN?

1y 15 eN>\ _ Qi
ﬁjo f(X)dx—mi;f(l/N) >s> <P<Nt> |foo> <=

4.3 Convergence to the Conditioned Process

The pair-measure trick that was used in Theorem does not work for chains that
evolve through nonlinear dynamics. Although over a small time interval &, the evolution
of the empirical measure m(v,) evolves similarly to T, the pair measure does not evolve
according to T, as T is nonlinear (see . Instead, we need to demonstrate that as N is
large, the covariance between particles goes to 0, so that they are, in a sense, asymptotically
independent. Then, by a bias-variance argument, we are able to show that the evolution of
the empirical measure of the Fleming-Viot system follows 7} closely in N (and uniformly
in t), which yields the desired convergence. This is trivially extended to the time average.

The first result, relying on a coupling argument, is what [2] dubs “Wasserstein expo-
nential ergodicity”. Let

A= inf | Qiy + O, ij A Qrj
i,{"neD(Q’ it Z QijnQ ’j>

Jj#id
p = A (sup(c) — inf(c))
Theorem 4.6 (Wasserstein Exponential Ergodicity). For any two 1,1, generated by Algo-

rithmd.1]
Wa(Law(n,), Law(i7})) < e ' Wy(Law (1), Law (7))

Where d is a scaled version of total-variation distance:

i) = 5 (i) = () = Ny m(n). m(o))

JEF
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and ‘W is the Wasserstein distance
Wap 1) = inf E[d(n,n')]
'Il NHI
Proof. We will construct a coupling of (7,) and (1), starting at 7, and 1, respectively,

which maximizes the probability of coalescence. If (¢') and (&™) are the positions of the
particles in each configuration, then we have the identity

di(n.m;) = [{1 <k < Nn} # 0/}

We will then decompose the generator of the joint process

Lf(mo) = Y, AGi, /) (Tiam Tomyn') = f(n.1))
ii',j.j'eD
as a generator associated with the dynamics and a generator associated to the killing (we
use L to emphasize that this is the generator of our designed coupled dynamics, and distinct
from the £ dynamics that govern the original process). So A = Ap + A;. Lets start by
describing how A couples the two systems, using the decomposition

n(i) = (@) A n' (D) + (@) = ' (D) +

which decomposes the particles by particles that can be coupled and excess particles.

There are 17(i) A i’ (i) particles that are at the same site i as their counterpart. We couple
these particles so that they move together, and

Ao(isi, jo j) = (n(i) A1/ (i) Qs
If a particle is not paired, the good option would be to choose a particle that sees simi-
lar states as itself and maximize the chance they go to the same state; you could think of
even better couplings to improve the convergence estimate. We will use the more brazen

approach of pairing particles at random. For a 7 particle at i, the probability that its corre-
sponding pair particle is at site 7/ is
(' (") —n()) +
di(n.7')
since the numerator are the number of 7’ particles that have not been pair off and the de-
nominator is the total number of not paired particles. So paired particles can coalesce in

two ways: by moving them simultaneously to the same state, or by moving one to the others
state and not changing the original dynamics. For a state j # i, ¢/, this gives

() =" () - (' (") —n(@))+

Ag(ir1', . J) = YACRD) (Qij A Qij)
A 1) = 1) = Bf(,},%(i )21 (g,
gl i = WO ) ),
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Of course the particles can move with dynamics that do not increase the number of paired
particles, but we are concerned about the convergence, so we will omit these values of Ag.
We now proceed with the coupling of the killing dynamics.

Take a coupled pair from 5({) A7’ (i). Since the killing rates depend only on the position
of the particles, they have the same killing rates, so when one is killed, we can kill the other
and try to maximize the probability they move to the same state, say j. We may do this
with probability

n(j) A1’ (j) — 6
N-—1

So we set 0) ) -1
. . M) An) = Liej

Ap(isis i J) = po(i) (n(i) A 7' (D)) T E—
For unpaired particles, we again pair them uniformly, and choose to kill them at the same
time when possible. Once killed, since the empirical distributions might differ, we send
them to the same particle with the same probability as before, this time without the 9; ;
term:

[ y . s
di(n.n') N-1
To demonstrate that this is a valid coupling, we would need to show that when a function
f 1 E x E — Rsatisfies f(n,17) = g(n) for some g, then Lf(n,n") = Lg(n), and similarly
for n’. Continuing with the exponential convergence, we reach, decomposing L = Ly +L,,
and using the fact that d; is only changed in the cases we identified,

Lod\(n,n") < —Adi (1)

Ap(id's ji ) = (i) = ' (i) + -

and
Lpdi(n,7') < (sup(c) — inf(c))di (n.7")
So Ld\(n,n') < pdi(n,n'), and by the Kolmogorov forward equation and Gronwall’s in-
equality,
E[d\ (m,m7)] < e *"E[d1 (o, p)]

And by the definition of Wasserstein distance, we are done. [ ]

The following two theorems are also found in [2]. We will omit the proofs of the
following theorems and corollary.

Theorem 4.7 (Covariance Estimates). If E, represents expectation of a functional over a
system generated byd.I|under initial distribution n, then for any k,l € D,n € E, andt > 0,

E, [U:}(\f) n;gl)] g [m}(\f)] E, [n,]él)” g 2(%__101) 1 _;zp,

Where, since we are working over a finite number of states,

Q1 = sup(—Q;;) <, c¢r = sup(c(i))

23



Theorem 4.8 (Convergence to the Conditioned Process). There exist B,C > 0 such that
for any initial distribution n € EN) and y € P(S),

w( L
s Bylln(n)(¢) ~ el < Ce ( = dn <n>,u>)

Corollary 4.9. Under the same conditions as the previous theorem, we can find Ko,y > 0
for which

Ko
sup sup E, [[m(n,)(¢) — m(n)Tgpl] < <2
20 o<1 N
Furthermore, if 1 is distributed according to the stationary distribution of the system ny,
then there exist Ky > 0 and y > 0 such that

Ky

E[lmm)(e) = v(0)] < 45

5 Particle Swapping

5.1 Glauber Dynamics

In statistical mechanics, the likelihood of observing a system in equilibrium in a par-
ticular state is related to its energy; states with low energy are more likely and states with
high energy are less likely. In particular, the probability of a state i is proportional to e ()
where H is the Hamiltonian: the energy of a particular state. Distributions that assign prob-
abilities in this manner are calleds Gibbs Distributions. A system for which such a state is
the equilibrium, and for which the dynamuics are reversible, is called a Glauber Dynamic
for that state. Recall the definition of reversibility:

Definition 5.1. A Markov chain X; is said to be reversible with respect to a distribution t if
the backwards distribution of the chain, starting at any T > 0, is the same as the forwards
distribution when both are started in distribution 1. When X, is has transition rates P,(x,y),
we have

]P(XT = y‘XT—t = )C)P(XT_t = X) = P(XT_, = X|XT = y)P(XT = y)
= P/(x,y)my = P,(y, x)m, (Detailed Balance Equation)
We notice here that detailed balance implies stationarity. From this we get Kolmogorov’s
criteria; for {j;} € S,
q(jl’ j2)q(j2’ ]3) e q(jnfl’ jn)q(jn, ]1)
= q(j1> jn)qUns Jn=1) - - q(J3: j2)4(j2s J1)
Furthermore,

7l'(] )q(leJZ)q(]Z? .]3) e q(jn—l,jn)
Y 4G dn) - a3 1)z )

ﬂ(jn) =
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Now take a finite state space S, and a reference assignment v € (0, oo)S of weights, not
necessarily summable (for our purposes, v will be uniform). We are given a Hamiltonian
H :S — [0, 00) that satisfies

Z(B) =Y e Py, <0 YBe (0,)

xes

Z is called the partition function, and encodes all the relevant physical information of the
underlying distribution; intuitively, the higher the temperature, the more likely high energy
events are. The gibbs state vy is the probability vector where

o
Z(p)

The Glauber dynamics corresponding to this distribution will not be unique, in par-
ticular, they depend on some communication matrix A that has non-negative entries, with
diagonal entries of 0. Furthermore A will be irreducible:

e FH),,

Y(B)x

sup(A"),, >0 V(x,y) e §?
and A will be reversible with respect to v, so that
ViAyy = VWA,

As a final condition, for the rates to be summable we need

S eHHOA,, < o
yes

When v is uniform, A denotes the states that are allowed to communicate.

Lemma 5.2 (Glauber Dynamics). Given a reference distribution v, Gibbs measure y(f3),
and communication matrix A, the rates given by

q(x,y) = e BHE)—H@))* 4

X,y
are reversible with respect to y(B)

Proof.
Y(B)2Quy = _e—ﬂ(H(x)+(H(>’)—H(X))+)VXAW
= — ¢ PHO)VHW)), A

~ 7ip)

= LB eHON g

=Y(B)yOy.x
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5.2 Setup

Suppose that a nearest-neighbor chain X, evolves according to the rates g(x,y), or
equivalently, has generator:

Lf(x) = Y q(xy)[f ) — f(x)]

VFEX

and is killed using soft killing rates ¢(x). We recall from Cor that £ has adjoint

L5 =Y [f0) = fO] + f(0) Y la0nx) = a(x.y)]

y#EX VEX

Allowing ¢ and ¢ to denote the QSD of this forward chain, as in Theorem [2.7—with ® and
Y denoting the corresponding energy potentials taking values in R— ¢ and ¢ will be the
unique solutions to:

=L (x) + c(X)p(x) =
—L7¢(x) + d(x)¢(x)

The time reversal of X,, say Y;, is the chain with transitions g(y, x). If ¥; is killed
according to rate d(x) = c¢(x) + h(x), where h is the Oth order term of L*, we see that the
QSD of ¥, also solves (5.2.1). Then if {Xt(')};“:1 and {Y,(’)};':l denote IPS converging in
measure to the QSD, as in Theorem , then we can pair particles with

A (x) (5.2.1)
A¢(x) (5.2.2)

I

XN = x, v

so the law of (X, ¥)—an abuse of notation for a chosen (X, ¥)()—converges weakly to the
distribution ¢ (x)p(y) = e~ (Y +20)),

5.3 Swapping Method

If we consider a pair of particles as an element in § x S, then Lemma (5.2)) tells us that,
with uniform reference measure, the swaps

— )) — N)) T+
Foy = q((53), (0, %)) = e HODZHCEMTL
— ) — — )+
— ¢~ (FO)+0(x)—¥(x)—0(y)) Aey) ()
are reversible under stationarity for any A that is reversible with respect to v, which in this
case is uniform, so A;; = A ;. These rates do not change the marginal distributions of the
individual particles under stationarity.
A priori, these rates are not known, and involve the QSDs themselves. However, the
forward and backward control problems allow for computation of these rates without need-
ing the distributions.

Proposition 5.3. Nearest-neighbor rate matrices satisfying a particular stationary distri-
bution are unique up to multiples of the rates.
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Theorem 5.4 (Particle Swapping Rates).

o (T (D) —¥(0)—-0()) T _ 1—[ q(zi+1,%) vl= m(y) v
1 q(zi, 2i41)

Where {z;}!| is a path with positive probability from x to y. Or equivalently, a sequence with
q(zi,ziv1) > OVie [n— 1] where x = zy and 7, = y.

Proof. By Theorems [3.2| and the rates b*(x,y) and &’(x,y) are nearest-neighbor rates
with the same stationary distribution, ¢(x)y(x). Since such rates are unique up to constant
multiples (by the above proposition), and the total rates are the same:

b*(x,x) = b'(x,x) = A+ q(x,x)

The rates are the same, so for any x that communicates with y in the original chain, neither
being hard killed states (nearest neighbors),

b*(x,y) = q(x,y)e" 00

= b'(x,y) = q(y,x)e®D 70

SO
o~ (¥0) +0() —P()—0(y) _ 405 %)
q(x.y)
By telescoping along these states, we have the first equality, and the second equality just
follows from the Kolmogorov criteria.

In principle, this would work for any irreducible chain for which we can make the same
uniqueness argument, and there are adjustments to the reference measure and communica-
tion matrix that can be made, perhaps to improve convergence.

5.4 Consistency of the Swapped System

The argument for the asymptotic consistency of the typical Fleming-Viot particle sys-
tem relied on a propagation-of-chaos argument. After showing that the system mixed suf-
ficiently well, it was shown that the particles were asymptotically uncorrelated, so that
each particle, when resampled, effectively sees the averaged dynamics. Then from a bias-
variance argument, the consistency was reached. The result we would eventually like to
prove is as follows:

Conjecture 5.5. If (n,w)an is distributed according to the invariant distribution of a N-
particle swapped Fleming-Viot system with swapping rate A, then there exists a Ay > 0,
such that Ay — oo and for any sequence By < Ay

Jim E[[m(nsy.n) () = v(¢)l] = 0

for any || < 1.
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5.5 Numerics

To demonstrate the efficacy of the swapping method, we will show that for a simple
particle system with known quasi-stationary distribution and clear metastability issues, the
swapped system explores the state space more, holding computations fixed, and seems con-
sistent in finding the QSD. Let X, be an interpolated diffusion process over [1, 1] satisfying

the SDE (see
dX, = U(X,)dt + dW,

where
U(x) = —11 - sin(37x)

with a mesh size of 4 = 0.05 and reflective boundary conditions. Then using linear algebra
(as discussed in [2.8) we can compute the quasi distribution for X, if it is killed at state

0 = {1} (Figure[l).

Figure 1: Gibbs distributions for the interpolated diffusion process.
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If the swapping multiplier is set to A = 1, then using the typical estimator for the QSD
from the Fleming-Viot particles, averaged over time, our numerics indicate that for large
T, the estimator appears to converge to the QSD (Figure[2)).

5.5.1 Well Method

To determine whether this is, in a suitable sense, a better estimator for the QSD, we
will measure how much individual particles explore the state space. The way we do this
is by defining “wells” of the state space to be places where the dynamics make it hard for
particles to escape, which corresponds to peaks of ¢ or troughs of @. To avoid doing this by
hand, we set a cutoff for the energy potential by some average value over the states, and find
the connected components of the states with potential lower than this. These components
are seen in Figure [3} a contiguous red line is a connected component, and a red dot is a
state in that component.
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Figure 2: Consistency of the swapped Fleming-Viot particles.

Distributions

—— Qsbh
| — FV Particles

0.100

0.075

Density

0.050 1

| [
[
I \
| \
0.025 /) a\
VRN
1.0

0.000

\
o5 00
X (interpolated by lattice)

In order to determine whether a particle has traversed between wells, we label particles
by their last explored well, and note a “well-to-well jump” when a particle moves into a
well that is different than their last explored well. Normalizing the number of well-to-well
jumps by the computations performed, we notice that the swapped system moves between
wells at a significantly higher rate, sometimes 3 to 4 times as often (Figure ).

It should be noted that the dynamics of a swapped system comprise a smaller proportion
of computations than a non-swapped system, so normalizing by computations, in a sense,

favors the non-swapping system.
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Figure 3: Construction of wells.
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6 Infinite Swapping
6.1 Two-Time-Scale Markov Chains

The theory of two-time-scale Markov chains is based on a chain whose generator is

0+0 (6.0.1)

™ | =

Qa:

As &€ — 0, the dynamics of é dominate the chain over time scales of order &, while for
order 1 time intervals, the dynamics of Q are averaged, and Q drives the dynamics. Lets
formalize what we would expect this to look like. First, we impose a condition on Q

Definition 6.1. A rate matrix Q is said to be locally irreducible if Q is block diagonal
by irreducible sub-matrices, possibly after permuting indices. In other words, Q has a
partition {S} by non-communicating irreducible classes.

Let |[{Sx}| = [ and |S¢| = my. Then when ¢ is small, the average amount of time
that the chain spends in the ith element of |S;| before evolving by Q is vf where V¥ is
the stationary distribution of ék , the S minor of é We would expect the dynamics of @
between irreducible classes to be, reordering the indices so that Q is block-diagonal,

yl

Qi
[
Q>
=i

where

Ly,

1

So if ¥¥ is the marginal representing the time spent in a particular class, we expect ¢ to

evolve by Q:
d

S0 =900, 94(0) = (s

and so the probability that a chain starting with distribution y is at site (k, j) at time 7, where
k is the irreducible class and j is an index of the class, is approximately v’;ﬂk(t).

The following theorem is Corollary 4.31 of [4]. It is a generalization of a much
more general theorem on the distribution of possibly inhomogenous two-time-scale Markov
chains, which approximates the distribution to higher order, depending on the regularity of
the semigroup.
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Theorem 6.2. Suppose that, for a Markov chain (X;) over finite state space S is locally
irreducible through a partition {S}, then there exist K, kg > 0 such that

k ak K()t
WP — 04 (1)] < K (e(l +1) + exp (—:)) 6.2.1)

where 1y j) is one in class k and index j and zero otherwise, Law(Xo) = u, and Py is the
semigroup of Q.

6.2 Infinite Swapping Limit

The last theorem directly applies to our swapping case. It is important to notice that
as defined, our swapping dynamics do not have well-defined distributions. This is because
as A, the swapping parameter from Lemma [5.2] gets large, the pairs of particles oscillate
quickly between two states; there is no well-defined dynamic, as the sample paths become
erratic as A — 0.

To fix this issue, we swap the dynamics of a particle pair, rather than their locations.

Formally, we define new random variables S (n) that take values over {1, —1}. S t(") will rep-

t
resent whether the particle Xr(n) is a forwards or a backwards particle, so that, for instance,

when § r(") =1, Xt(”) is a forward particle and is in a forward Flemming-Viot system with

all other X*) particles for which § ,(k) = 1 and all other Y(¥) particles for which S r(k) =-1
These are clearly the same processes, just with different “accounting”.

This system is exactly a two-time-scale Markov chain where the high-frequency process
is a locally irreducible process. To be precise, the elements of Q° represent transitions in
the entire configuration of the swapping system, and thus can be indexed by the positions
of all particles and the configuration of S "); in other words we index over

F={¢c:2N > Dx{l1,-1} | s»(n) = —g»(n+ N mod 2N)}

The irreducible minors of é are just 2 x 2 matrices that represent swaps between forward
and backward configurations for one pair at one location. Since the swapping dynamics do
not change the positions of the particles, but rather the polarity S, the quotient process Q is
well-defined as a dynamic over the quotient (X, ¥). It is easiest to parameterize the partition
by two indices, the first representing the pair of particles (with N possibilities) that is to be
moved, and the second representing the location of each particle (with |D|? possibilities):

Anxy) _ [ Ty Tay
e ( Fyx T )uX>

This way of describing the dynamics is inefficient from a combinatorial perspective, since
many of the swapping and evolution values are duplicated (swapping rates for pairs do not
depend on the other particle’s positions, for instance).

Invoking Theorem we see that sending & — 0, the (X, Y) dynamics of the system
(X, Y,S) converge to the following system:
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Algorithm 6.3 (Infinite-Swapping System). Let

N Txy
xy =
Txy T Iyx

Then the infinite swapping limit of the swapped Fleming-Viot system has the following rates

e If(X,Y)" = (x,y) then X moves through its dynamics to z with rate

Viy Qx,z + Vyx Qz,x

e If(X,Y)" = (x,y) then Y moves through its dynamics to z with rate

Vxy Qz,y + Vyx Qy,z

o If(X,Y)") = (x,y), then X is killed with rate
Viye(x) + vy d(y)

Once killed, it chooses another pair uniformly, and then, if the pair is at positions
(g, p), it moves to q with probability v, , and p with probability v, ,

o If(X,Y)™ = (x,y), then Y is killed with rate

Viyd(y) + vyxc(x)

Once killed, it chooses another pair uniformly, and then, if the pair is at positions
(g, p), it moves to q with probability v, ; and p with probability v, ,

And the following is an asymptotically consistent estimator of the QSD ¢:

I
#(dx) = T J,:() Z VX/(H)’YI(,,) 6X[(n) (dx) + vyl(n)’X[(n) (5),1(,1) (dx) dt

n=1

7 Applications

7.1 Standard Markov-Chain Monte Carlo

The simplest application of this swapping system is in performing MCMC on a normal
Gibbs measure. The rationale for using such a system is simple: we can use the reversed
dynamics of a system to reduce the metastability issues of a Metropolis-Hastings estimator
without knowing any additional structure about the chain. The construction through QSD
was necessary to formalize how the backward dynamics interacted with the Fleming-Viot
system. A Fleming-Viot system that approximates a stationary distribution is just a set of
N independent particles; by introducing the backwards system, we allow these particles to
interact in a way that is constructive in finding the distribution.
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7.2 Diffusions and their Discrete-state Approximations

Quasi-stationary distributions may exist in absorbed processes whose state space may
be finite, countable, or uncountable and whose time indices may be countable or uncount-
able. In most cases, the diffusion processes—a subset of continuous state continuous-time
Markov processes whose paths are continuous—are the easiest to manipulate, despite the
relatively steep theory. For this reason, it will be prudent to consider the effects of our
improvements on estimators of QSDs on these spaces. When we computationally model
these effects, discrete-state approximations will be critical.

The SDE,

dX; = —Xdt +dW,, Xy =0

where W, is a Weiner process, describes a standard Ornstein—Uhlenbeck process. This
differential notation represents integrals on time so that X, = SG —Xds + W, + Xp. One can
see that such a process has two terms: a symmetric diffusion term, and a term that pushes
the process back to the origin.

Our motivation for such a process is simple: although a one-dimensional Browninan
motion is always recurrent—it can be shown that for any € > 0, W, takes strictly positive
and negative values on (0, €)—its discrete-time analog is not. Adding an inward drift term
makes it positive recurrent, which is important for existence of a stationary distribution in
the diffusion process.

Proposition 7.1. It can be shown, using variation of parameters, that the explicit equation
for this process is

13
X, =Xpe ' + f e dw;
0

Proof. First, we notice that
X4 xh—=0= Xx"=Ce!
So, by variation of parameters, letting X, = v(¢)e™" yields:

dw,

V(e —v(t)e T +v(t)e = o

! t dW_y
J V(t)dt = f e —ds
0 0 ds

Returning to the concept of generators, it can be shown that the generator for our stan-
dard Ornstein-Uhlenbeck process is Lf(x) = —xf’(x) + 5f”(x). To find a discrete-state
analog of the diffusion process, we consider jumps on the lattice hZ given by the process
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{X"} and design jump rates so that L' f ~ Lf = —xf'(x) + 1f”(x). To this end, we use
difference estimates:

FOth)—F(x)
/ 7
()~ 4 0 —feen
h

ey« L0 D220 1)

The expression for f”(x) is easily verified using I’'Hopital and f € C>. Using Prop
and the generator for our diffusion process, we obtain new jump rates. We split our f’(x)
term into two cases to ensure that we are left with a generator that represents a legitimate
process in the form ' (x, y)[f(y) — f(x)].

L7 = Lo’y [£() — fx— )]

~Lecogs (x4 ) = £

L L+ k) = 2f(3) + fx—h)
2 h?

U
\ 1 1
r(x,x+ h) = %) Fxhl g0y + 3

Here, when x is negative, we ensure the generator takes the required form by using the
[f(x+ h) — f(x)] expression to ensure our rates will be positive (—x > 0). This process is
called upwinding.

Staying in our discrete-state process, we have seen that we can manipulate the expres-
sion (g, Lf) = (L*g, f) to find the £* adjoint for £, which for discrete-states is character-

ized:
LHf(x) = Y g 0)[f0) = )] + £(x) Dg0x) — g(x.y)]

yeX yeX

where ¢ is the rate matrix on the underlying process.

8 Other Possible Improvements

8.1 Change of Reference Measure

To improve the approximations, we could use a reference measure other than the reg-
ular Lebesgue/uniform measure, and will then find the Lebesgue/uniform adjoint of that
new operator, which will be (L)*. After simulating Fleming-Viot particles on this new
process (we saw that Generators characterize processes from Lemmal[T.10) renormalization
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will yield an approximation of the QSD of the original process.

In a general setting, for any reference measure p(dx) that is absolutely continuous with
respect to the lebesgue measure, so that p(dx) = p(x)dx, we will have:
1
p(x)
and if ¢ and ¢ represent eigenfunctions in L?(p) and L? respectively, then ¢ = ¢/p [1]]. We

have a proof of both statements, as well as a formulation of the adjoint in the finite-state
case, below.

L f(x) = —=L*(fp)(x)

Proof. We recall the adjusted inner product

(f(x),8(x)) = Jf (x)g(x)p(dx) = Y, f(x)g(x)p(x)

xeS

The first statement follows; take any test function g(x), then
1 1 1
(L f.8) =<{Lyf. ;g>p ={fp, L;g> = <;£*(fp),g>

Furthermore, if ¢ is an eigenfunction of L*

L@ -4 £t

2

In the finite state case, with rates g(x,y), we use this expression to find the general ad-
joint, and manipulate the expression to find £*. Continuing with the aforementioned inner
product,

= Zq(x,y)g(y)l f(x)
xeS LyeS
= > q(x ) f(2)8(y)
yeS xe$§
= > 12040 f0) - Zq(x,y)p(X)l 2(y)
xeS Ly#x YEX
= S Sa0. D0 = £+ () Yalyx) - q(x,y)]] 5(y)
xeS Ly#x YEX

and we see the expression of L*. Then for a reference measure p, our earlier conclusion
leads to:

Lof(x) =

Fﬁ D10 ) 0)pG) = F@p(x)] + £(x) Y lg(.x) — q(x,y)]l

yEX yEX
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Here, it is important to note the distinction between operators and generators. Not all
operators can be represented as generators of a Markov chain, and although all genera-
tors are operators, heuristically, we interpret generators as objects that encode information
about some underlying process (specifically, the expected infinitesimal change in functions
with time).

In the context of a diffusion, to see how the dual generator in effect “reverses” the dy-
namics of the process, and the effects of our change of reference measures, we could study
the following relationship:

L > L > (LM)* (L
\\‘—/5( \)
3
H — H" (H")* (L)

Here, our new operator H, represents the generator for the reversed diffusion process:
Hf(x) = xf(x) + 1f”(x), a process that, trivially, has no limiting distribution. For this
uni-modal distribution, we could look at three reference measures:

(1) Lebesgue measure: p(dx) = dx. Here, our process will not change, of course, and
the dynamics will still push inwards.

Xz .

(2) Stationary distribution: p(dx) = e~ 2 dx. Here, we expect the dynamics of our new
process to be reversed (~ H). The increased frequency of killings and consolidation
of particles towards the boundary is expected to improve the Fleming-Viot approxi-
mation.

_2

(3) Weakened version of stationary distribution: p(dx) = e~ dx. Here, we expect our

new dynamics to be a middle ground between £ and H, a Weiner process with no
drift.

8.2 Associated Markov Chain

We now consider the uniform adjoint of the reference-measure adjoint (which is also
the operator whose adjoint is £ as the adjoint operator is an involution) for the finite-state
CTMC. Using the identity (L g(x), f(x)) = <(g(x), (L})* f(x)), and the proof from the
last section, we compute the second adjoint as

(L) F) = 3 Y gl (—” W)

xe§ ye§

= ley) X
= qu(y, o )]g(y)

yeS [xeS§
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= p()
DX D20 - WESHE
XC DE ) - ;qu,w%f@
- St DEF0) = 0] + ) ety |2 1]
XC DA U0) - £] + (Z alx, ”ﬁ%) £
— L, f () + (0 ()

Here, £, is the generator of the process with rates g(x, y)o(x)p(y) "', and &, is a Oth order
term, so the eigenvalue problem, which we have shown to be equivalent to the original
QSD after renormalization, can (??) be solved using a Flemming-Viot scheme.

8.3 Speedup

It can be shown that for non uniform p’ = p~', 3x such that 4, (x) < 0. Take x =
arg max, p(z). Then since p is irreducible

(Qp)(x) = g(x. x)p(x) + Y q(x.y)p(y)

yEX
— (5 1)(p(y) — p(x) <0
y#EX
So the conclusion holds, as
hy(x) <0 — Zq(x,y)@ <0
= p(x)

<~ QOp<Oatx

In order to perform Flemming-Viot when the Oth order term is not non-negative, there
are two main approaches. One involves introducing particles, rather than killing them, at
rates determined by the negative positions/magnitudes of the Oth order term. Another is to
add a constant to the Oth order term, which requires a correction to the computed killing
rate.
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