
Swapping Methods for Fleming-Viot Estimators of
Quasi-Stationary Distributions

Itamar Fiorino

The primary motivation of this thesis is to explore improvements to computing meth-
ods related to quasi-stationary distributions—limiting distributions conditioned on non-
absorption to some absorbing subset that is reached almost-surely.
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1 Preliminaries
The central objects studied in this thesis are Markov processes.

Definition 1.1. Given a filtered probability space pΩ,F , pFtqtPI ,Pq and a totally ordered
index set I, a Markov process taking values in a measurable space pS ,Sq is a sequence of
random variables pXtqtPI that satisfy the Markov property

PpXt P A|Fsq “ PpXt P A|Xsq @A P S, t ě s

In the literature, a Markov chain is usually a Markov process where either I or S is
discrete. In this thesis, we will work in a setting where S is finite and I will be either R`

or N; the distinction will be clear.

1.1 Discrete-Time Markov Chains
In this work, we will usually assume that our Markov chains look the same over dif-

ferent times, meaning that the conditional distribution defined by the Markov property is
time-invariant, so that

PpXt P A|Xsq “ PpXt´s P A|X0q “ Pt´spX0, Aq

We call these Markov chains homogeneous, and the transition kernel Ptpx, dyq is usually
denoted the semigroup of X, as it is a semigroup homomorphic to I under matrix multi-
plication (or more generally, kernel integration). When we work in discrete-time, we write
the matrix

Px,y B P1px, yq “ PpX1 “ y|X0 “ xq

Then by conditioning on the intermediate states, we have, (where we denote PµpAq “
ş

PxpAqdµpxq and extend to expectations as usual)

Eµr f pXtqs “ µPt f

In the study of discrete-time Markov chains, a few conditions on a chain are essential
for nice behavior. It is important to note that these conditions may be necessary to make the
general statements relating to ergodicity which are found here and in §4.2. In particular,
if we generalize to chains over possibly infinite countable state spaces, we need a positive
recurrence condition for the Mean Ergodic Theorem to hold (see [7] Theorem 4.1.14).

Definition 1.2. Given a Markov chain with transition kernel Ptpx, yq, a state i is said to
be accessible from a state j if Ds P I such that Pspi, jq ą 0; we write i Ñ j. If i Ñ

j and i Ð j, we write i Ø j and say that i and j communicate. Communication is
an equivalence relation, and the distinct classes of states that communicate are denoted
irreducible classes. A chain with one irreducible class is said to be irreducible.

Definition 1.3. A probability measure π is a stationary distribution if πP “ π
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It can be shown that every irreducible chain has a unique stationary distribution. A
natural question to study is the sense in which samples of X converge to a stationary dis-
tribution. The first notion is the convergence of the marginals; for nicely-behaved Markov
chains, we would like to know how µPn Ñ π.

When I “ N, we may worry that states in the chain will cycle, in some suitable sense,
so that the semigroup doesn’t exhibit sufficiently well-behaved mixing properties. The
period of a state x is gcdtn|Pnpx, xq ą 0u. The period of a state is a class property, and
classes/chains with period 1 are said to be aperiodic. The period of an irreducible chain
corresponds to the multiplicity of the eigenvalue 1 of the transition probability matrix.

Theorem 1.4. If a Markov chain with transition probability matrix P is irreducible and
aperiodic, then DM P N, ε ą 0 such that for all µ P PpS q

}µPn ´ π}1 ď 2p1 ´ ϵqt n
M u

Proof. This is a special case of Corollary 3.1.16 in [7]. ■

Another way that samples of X can converge to the stationary distribution is in empirical
measure, which is defined to be mpXnq “ 1

N

řN
1 δtXnu. Equivalently, if we choose a time M

uniformly in rNs B t1, . . . ,Nu, this is the law of XM . The sense in which this convergence
holds is in probability, under the (metrizable) topology of weak convergence (see §4.2 for
a full discussion).

1.2 Continuous-Time Markov Chains
Continuous-time Markov chains (CTMC), the analogs of discrete time Markov chains,

require some extra time-regularity conditions. There are several options for defining these
processes, each of which is valuable in its own right, either for heuristics, modeling, or un-
derstanding the chains from a dynamical systems perspective, and have varying usefulness
in defining nonlinear CTMCs. We start with the most general characterization.

Definition 1.5. A Markov process tXtutPI on a probability space pΩ,F ,Pq is called a
continuous-time Markov chain if it takes values over a discrete space, and for almost
every ω P Ω the map t ÞÑ Xtpωq is right continuous with left limit.

The right continuous with left limit condition is often called càdlàg in the literature
(from the French ”continue à droite limite à gauche”).

Proposition 1.6. The distributions of càdlàg processes are completely determined by its
finite-dimensional distributions, so the Markov property can be restated as

PpXtn`1 “ xn`1|Xtn “ xn, . . . , Xt1 “ x1q “ PpXtn`1 “ in`1|Xtn “ xnq

for any increasing ttku
n`1
k“1 and txku

n`1
k“1 .

As before, we denote Px,y “ Ptpx, tyuq “ PpXt “ x|X0 “ yq and let Pptq be the matrix
tPx,yptqu. As before, the general characterization of a stationary distribution PµpXt P Aq “

µpAq extends to
πPptq “ π
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Definition 1.7. A matrix Q is called a transition rate matrix, or just rate matrix if Q1 “ 0
and Qx,y ě 0 when x , y. A Markov process Xt has rates Qptq if, for every t, h ą 0,
x, y P S ,

PpXt`h “ y|Xt “ xq “ δx,y ` Qx,yptqh ` ophq

Then it can be shown that, thinking of Pptq as a Lie group action on the space Rk,
the evolution laws of homogeneous chains become homogeneous ODEs (and similarly for
inhomogeneous chains):

Theorem 1.8. If a homogeneous Markov process has rates Qptq “ Q, its marginal distri-
butions µptq are just integral curves of the vector field Q starting at µp0q, so that Pptq “ etQ,
and P satisfies the relationship

d
dt

Pptq “ PptqQ

d
dt

Pptq “ QPptq

These are called the Kolmogorov forward and Kolmogorov backward equations, respec-
tively.

Given a discrete-time and discrete-state Markov chain, a basic construction is the gen-
erator, which measures expected increments at different states:

L f pxq “ Er f pX1q ´ f pX0q|X0 “ xs

Obviously, the form of the generator leads to an alternate characterization of stationarity
L˚π “ π. Generators are most useful in continuous-time, where they are defined as fol-
lows:

Definition 1.9. Given a continuous-time Markov process Xt that takes values over a Polish
space P (discrete, countable, or uncountable), the generator of Xt is an operatorL, defined
on some subset of C2pPq, as

L f pxq “ lim
δÑ0

Er f pXδq ´ f pX0q|X0 “ xs

δ

The space of functions for which L is defined is of paramount importance. Typically,
we want it to be defined over a subset of functions that is suitably large as to separate
points; since we will be working primarily over finite spaces, we gloss over this detail. We
also have two important statements, that are unproven here but which have some heuristic
importance.

Lemma 1.10. Given a homogeneous Markov process Xt over a finite space S,

(a) The generator L of Xt characterizes the process.

(b) For any f P C2pS q, Yt “ f pXtq ´
şt

0L f pXsqds is a martingale

This result will extend to general Polish spaces under further conditions on L, and the
statement (b) on Yt might be qualified to a local margingale property.
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1.2.1 Nonlinear Continuous-Time Markov Chains

1.3 The Perron-Frobenius Theorem for ML Matrices
The next result in linear algebra is critical in characterizing the existence of stationary

distributions (and, as we will see, Quasi-Stationary distributions) in the finite-state case.
First, we define Metzler-Leontief (ML) matrices:

Definition 1.11. A matrix Rnˆm is called an ML matrix if its off-diagonal elements are non-
negative. If for any i , j, there exists N ą 0 and i1, . . . , iN´1 that serve as a path of strictly
positive rates from i to j, the matrix is said to be irreducible. Rigorously, qpik, ik`1q ą 0
for any k ă N.

Then we have following theorem, which is crucial for existence and uniqueness state-
ments:

Theorem 1.12 (The Perron-Frobenius Theorem for ML Matrices). Suppose A is an irre-
ducible n ˆ n ML matrix. Then there exists a real eigenvector r whose real part is maximal.

(i) Left and right eigenvectors associated with r have entries strictly positive, and are
unique up to constant multiples.

(ii) Any other eigenvector r0 of A satisfies Repr0q ă r.

(iii) r is a simple (multiplicity 1) root of the characteristic function of A.

(iv) r ă 0 iff there exists some Rn Q y ě 0 such that Ay ď 0 with inequality in at least
one entry.

(v) if we denote the right and left eigenvectors of (ii) as vT and w and normalize such
that vT w “ 1, then for any t ą 0, there exists τ ă r such that

eAt “ ertwvT ` Opeτtq

Proof. For a proof of this result, see Page 46 of [6]. ■

In the theory of ML matrices, r is typically denoted the Perron-Frobenius eigenvalue
of A.

2 Quasi-Stationary Distributions
We will first explore the general characterization of a quasi-stationary distribution,

which holds over general time and spatial constraints; many of the conclusions that hold
for stationary distributions have discrete-time analogs. The issue in developing such exten-
sions, underscored in §1.2.1 is that the dynamics associated with Quasi-Stationary Distri-
butions are inherently nonlinear, so MCMC methods for computing them is difficult, and
relies on the development of linear chains that approximate the nonlinear dynamics.

Consider a continuous-time Markov process X “ pXt : t ě 0q taking values in state
space S endowed with σ-algebra BpS q. We will be concerned with the behavior of our
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Markov chain within some measurable connected subset D, denoting our forbidden states
B “ S zD. Let T denote the killing time T “ TB “ inftt ě 0 : Xt P Bu. The quantities of
interest will depend only on XT , so without loss of generality we set Xt “ XT when t ě T .
We will assume that the process is almost surely killed so that PxpT ă 8q “ 1.

2.1 Definitions
Definition 2.1. A probability measure ν P PpDq is said to be a quasi-stationary distribution
(QSD) of X on D if for any t P r0,8q and A P BpDq

PνpXptq P A|T ą tq “ νpAq (2.1.1)

or equivalently
PνpXptq P A,T ą tq “ PνpT ą tqνpAq (2.1.2)

Theorem 2.2. If ν is a QSD, then Dαpνq ě 0 such that

PνpT ą tq “ e´αpνqt

Where we note that α “ 0 if and only if ν is a stationary distribution.

Proof. First, we notice that for any g PM`pDq, monotone convergence and (2.1.2) yields

EνrgpXptqq1Tąts “ νpgqPνpT ą tq

Setting gpxq “ PxpT ą sq we have Eν
“

EXptqr1Tąss1Tąt
‰

“ PνpT ą sqPνpT ą tq. Finally,
we use the Markov property to see

PpT ą s ` tq “ Eν r1Tąt`ss “ Eν r1TątE r1Tąt`s|Ftss

“ Eν
“

EXptqr1Tąss1Tąt
‰

“ PνpT ą sqPνpT ą tq

Since T has the memoryless property, it must be exponentially distributed. Of course,
if α “ 0, the process is never killed, so the quasi-stationary distribution and stationary
distribution coincide. ■

We denote α the decay rate or exponential decay rate.

2.1.1 Hard-Killing and Soft-Killing Regimes

While the preceding section identifies specific absorbing states, these states and their
structure is irrelevant to the distributional properties of a QSD. This identifies two distinct
ways of characterizing the QSD, which are in some sense the same but have heuristic and
algorithmic implications. In the hard killing regime, chains evolve and upon entrance to an
absorbing state, never exit; they are in a loose way “dead” to us, hence the term “killing”,
and their sample paths are irrelevant to the QSD. In the soft killing regime, we imagine
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that a Markov chain evolves and is independently killed according to a state-dependent rate
cpxq. At the hitting time of cpxq, we decide to kill the sample.

Of course, the hard killing regime can be turned into an equivalent soft killing regime
by restricting the state space and evolution of particles, and taking cpxq to be qpx, Bq, or
by setting c “ 8 ¨ δB (we are glossing over some details for the extension of the killing
rate to infinite values here). Alternatively, a soft-killed regime can be turned into a hard-
killed chain by identifying an absorbing state. Hard-killing is typically more useful from a
pedagogical perspective when the states that we are conditioning on are explicitly defined,
and soft-killing is useful for notation, calculations, and generalizing to other problems that
are not QSD problems (or to diffusions).

2.2 Characterization of the QSD
We remember a quasi-stationary distribution is the limiting distribution of a Markov

chain conditioned on staying within a region, again call it D Ă S . Let,

cpxq “

#

8 x < D
0 x P D

Then, we have

PxpXt P A,T ą tq “ PxpXt P A, Xs P D @ 0 ď s ď tq “ Ex

”

e´
şt

0 cpXsqds
1ApXtq

ı

since the first expression will be 1 when Xs remains in D before t and zero otherwise
(although X is allowed to leave the boundary in some negligible time, this is also negligible
over path-space). Therefore, we can find a limiting distribution by taking

θtpx, Aq “

Ex

”

e´
şt

0 cpXsqds
1ApXtq

ı

Ex

”

e´
şt

0 cpXsqds
ı ´Ñ θpx, Aq

That quasi-limiting distributions are quasi-stationary—and a discussion on cpxq, which in
stochastic control representations is called the cost function—can be found in [5]. Inter-
preting both θt and θ as measures/kernels, it can be shown that

ş

θtpy, Aqθpx, dyq ” θpx, Aq,
which illustrates the quasi-stationarity of θ.

We will start by looking at stationary distributions. From the general expression for the
infinitesimal generator L, we can reach a characterization of stationarity. A weak charac-
terization for a stationary distribution is

ż

S
f pxqπpdxq “

ż

S

ż

S
f pyqP∆px, dyqπpdxq
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where P∆ is the transition kernel for the process over some time interval ∆. Then,

0 “

ż
„

ż

f pyqP∆px, dyq ´ f pxq

ȷ

πpdxq

“

ż ż

r f pyq ´ f pxqs P∆px, dyqπpdxq

Dividing by ∆ and taking the limit as ∆Ñ 8.

0 “

ż

L f pxqπpdxq

‹
“

ż

f pxqL˚πpxqdx

and we get the result L˚πpxq “ 0. We note that ‹
“ relies on a change of variables to some

reference measure over the space and then use of the L2 adjoint.

We now find a similar result for quasi-stationary distributions, where we need to worry
about losing mass. In particular, we have seen that when a process is evolved starting from
a quasi-stationary distribution ν, without conditioning, it will lose mass exponentially [3],
so that PνpT ą tq “ e´αt, where T is the hitting time, PνpAq “

ş

PxpAqdν, and α may
depend on ν.

Lemma 2.3. A quasi-stationary distribution θpdxq “ θpxqdx, up to normalization, will be
characterized by ´L˚θpxq “ αθpxq, where α is the decay rate and L˚ is the L2 adjoint of
the infinitesimal generator.

Proof. First, we use exponential decay to attain the expression

Eθ

”

e´
ş∆

0 cpXsqds
1ApX∆q

ı

“ e´α∆θpAq

which we reached from our earlier characterization of the QSD. By evaluating over C2 test
functions we have

Eθ

”

e´
ş∆

0 cpXsqds f pX∆q

ı

“ Eθ
“

e´α∆ f pX0q
‰

and the same process from the regular stationary distribution yields

0 “ Eθ

”

e´
ş∆

0 cpXsqdsr f pX∆q ´ f pX0qs ´ f pX0q

”

e´
ş∆

0 cpXsqds ´ e´α∆
ıı

ˆ ´
1
∆

lim “ñ “

ż

L f pxqθpxqdx ´ Eθ

„

f pX0q

ˆ

1 ´ lim
∆Ñ0

r1 ` α
∆

∆
´ α2 ∆

2

2∆
` ¨ ¨ ¨ s

˙ȷ

“

ż

f pxqL˚θpxqdx ` α

ż

f pxqθpxqdx

which yields the desired expression. We justify moving the limit inside by dominated
convergence. ■
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2.3 Existence and Uniqueness over a Finite State-Space
Consider now that the continuous-time Markov chain Xt is over a finite state space. In

the language of [5], we assume some transition rate matrix rQ with the following structure:

rQ “

„

0 0
a Q

ȷ

where the first row and column represent B, the absorbing state. Our forbidden states do not
communicate, and our allowed states are absorbed with rates a. Our internal rate matrix Q,
is assumed to be irreducible (otherwise we have issues with the uniqueness of our QSD).
Then we have the following compound rate matrix:

rQn “

„

0 0
Qn´1a Qn

ȷ

Seen inductively below.

rQn´1
rQ “

„

0 0
Qn´2a Qn´1

ȷ „

0 0
a Q

ȷ

“

„

0 0
Qn´1a Qn

ȷ

Then with rPptq as the transition probability matrix of the absorbing chain at time t ą 0,

rPptq “

8
ÿ

n“0

rQntn

n!

The following lemma is clear for diagonalizable rate matrices, but holds for all matrices

Lemma 2.4. If λ is an eigenvalue of matrix A associated with an eigenvector v, then eλ is
an eigenvalue of matrix eA associated with the eigenvector v.

Now we can characterize the Quasi-Stationary Distribution as a solution to a Linear
Algebra problem. We start by finding the forward generator for Xt.

Proposition 2.5. The generator for a discrete-state process with transition rates qpx, yq is

L f pxq “
ÿ

yPX

qpx, yqr f pyq ´ f pxqs (2.5.1)

Proof. Here, we use the fact (via Taylor expansion) that for i , j, PipXh “ jq “ qpi, jqh `

ophq, so we have

L f pxq “ lim
δÑ0

Er f pXδq ´ f pX0q|X0 “ xs

δ

“ lim
δÑ0

ÿ

y,x

pqpx, yqδ ` opδqqr f pyq ´ f pxqs

δ

“
ÿ

y,x

qpx, yqr f pyq ´ f pxqs

10



Using the properties of rate matrices, we also have the form

L f pxq “
ÿ

yPS

qpx, yq f pyq

so L f “ Q f , identifying f with a the column vector. This will allow, in simple cases, for
us to compute the QSD using linear algebra (see Prop. 2.8). ■

Corollary 2.6. The adjoint of the generator L, given transition rates qpx, yq is:

L˚ f pxq “
ÿ

y,x

qpy, xqr f pyq ´ f pxqs ` f pxq
ÿ

y,x

rqpy, xq ´ qpx, yqs

Proof. For a proof, see the general construction in L2pρq in §8.1. ■

Returning to the eigenvalue problem, we have the following result, which identifies the
importance of the generator L and its adjoint.

Theorem 2.7. Suppose the Markov process X is irreducible on D, then

(i) A vector ν̄pxq is an eigenvector for L˚
ρ if and only if νpxq “ ρpxqν̄pxq is also an

eigenvector of L˚ with the same eigenvalue.

(ii) There exist a real eigenvalue ofL andL˚, λ ą 0, for which r ą λ for any eigenvalue
r , λ.

(iii) There exists a unique quasi-stationary distribution ν associated with this eigenvalue

(iv) There exist eigenvectors ψ and ϕ of ´L and ´L˚ respectively, associated with the
eigenvalue λ. ϕ is the unique quasi-stationary distribution and pϕ, λq “ 1. For any
ρ PM`pDq, p̄ϕq “

ϕ
ρ

is an eigenvector of ´L˚
ρ associated with the same eigenvector

λ

(v) The function ψ characterizes the exit/decay rate from D, or, loosely, the rate at which
mass leaves conditioned on its origin

ψpXq “ lim
tÑ8

eλtPXpτδ ą tq

Proof. (i) Notice that L˚
ρ pν̄q “

L˚pρν̄qpxq

ρpxq
“

λρpxqνpxq

ρpxq
“ λν̄pxq

(ii) By the assumption of irreducibility, Q is a ML matrix, and thus by Theorem 1.12,
Q has eigenvalue r ą 0 associated with eigenvectors vT and w (whose entries are
positive). Then if λ “ ´r, we notice:

Lvpxq “
ÿ

yPS

qpx, yq rvpyq ´ vpxqs “
ÿ

yPS

qpx, yqvpyq “ ´rvpxq “ λvpxq

11



Then since L and L˚ have the same eigenvalues:

λ < σL ðñ DS : S pL´ λIq “ I

ðñ pL˚ ´ λIqS ˚ “ I

ðñ λ < σL˚

by (i) we are done.

(iii) This can be proven in a number of ways. The first, and simplest way, is to use the
characterization of the QSD in Lemma 2.4 of [5].

(iv) If we set ψ “ v and ϕ “ w from (ii) and Theorem 1.12, then we can see that ϕ is an
eigenvector of ´L: Then if λ “ ´r, we notice:

´Lvpxq “ ´
ÿ

yPS

qpx, yq rvpyq ´ vpxqs “ ´
ÿ

yPS

qpx, yqvpyq “ ´rvpxq “ λvpxq

Then since L and L˚ have the same eigenvalues:

λ < σL ðñ DS : S pL´ λIq “ I

ðñ pL˚ ´ λIqS ˚ “ I

ðñ λ < σL˚

by (i) we are done. Then also ψ is an eigenvector of ´L˚:

ψT Q “ λψT “ñ λψ “ QTψ “ Q˚ψ “ L˚ψ

(v) See [5]
■

The following proposition is not immediately obvious from the typical presentation of
the generator, and allows for sanity-check computations of simple QSD.

Proposition 2.8. If the rates qpx, yq correspond with a rate matrix Q,
ÿ

y,x

qpx, yqr f pyq ´ f pxqs ` f pxqhpxq “ pQ ` Hqpxq

Where H is a diagonal matrix with entries Hpx, xq “ hpxq

Proof.
ÿ

y,x

qpx, yqr f pyq ´ f pxqs ` f pxqhpxq “
ÿ

y,x

qpx, yq f pyq ´ f pxq
ÿ

y,x

qpx, yq ` f pxqhpxq

“
ÿ

y,x

qpx, yq f pyq ` f pxqqpx, xq ` f pxqhpxq

“
ÿ

yPS

qpx, yq f pyq ` hpxq f pxq “ pQ ` Hqpxq

■

Applied to L f pxq, we see L “ rQ, so a QSD, which is an eigenvector of L˚, will be an
eigenvector of Q˚ “ QT when restricted to allowed states, and 0 otherwise.
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3 Stochastic Control
The primary objects in Stochastic Control relevant to the study of QSDs are twofold: a

minimal cost function, whose optimal policy is related to the quasi-stationary distribution
for the chain, and the optimal ergodic cost, which relates to the decay rate. In this section,
we begin by introducing both objects in the discrete-time setting, which we generalize to
CTMCs in the following section

Consider the following setup, found in [5]:

• Take tXnunPN, a discrete time Markov chain over finite S with X0 “ x

• A time horizon N P N, which is trivially sufficient for well-posedness of the opti-
mization problem.

• A control space U, which can be interpreted as the set of controls that are available
to minimize cost. U is a Polish space (a metrizable, separable topological space).

• A running cost, which contributes to total cost throughout the living time of the
Markov Chain, c : S ˆ U Ñ r0,8q. This must be a tightness function over U [5],
ie. for each x P S , M P r0,8q, the sublevel sets tu : cpx, uq ď Mu Ă U are compact.
We include a terminal cost F as well.

• A map of controlled transition probabilities which depend on the chosen control
p : S 2 ˆ U Ñ r0, 1s which represent a discrete-time Markov transition matrix for
each control, under the assumption that transition probabilities are continuous in
control (i.e. u ÞÑ ppx, y|uq is continuous for any x, y P S ).

• The policy π representing the time and state-dependent control. π “ tgiuiăN where
gi : S Ñ U.

The finite-time problem asks the control to perform the following optimization, where Ui “

πpXiq “ gipXiq, and Xi follows transition probabilities governed by p:

Vpx, iq “ inf
π
Eπx,i

«

N´1
ÿ

j“i

cpX j,U jq ` FpXNq

ff

Such prototypical stochastic control problems are typically solved backwards using dy-
namic programming, noticing the following equality, formally described in [5]:

Vpx, iq “ inf
uPU

«

cpx, uq `
ÿ

yPS

ppx, y|uqVpy, i ` 1q

ff

The second object that is important in the study of QSDs is the optimal ergodic cost, which
will be interpretable as the decay rate:

γ “ inf
π

lim
nÑ8

1
n
Eπx

«

n´1
ÿ

i“0

cpXi,Uiq

ff

13



3.1 Forward Ergodic Control
There are two main ergodic control representations that are discussed in the study of

QSDs, one related to the generator L and one associated with its adjoint L˚. Consider a
modified process sXt with new, controlled, jump rates b̄ “ tb̄px, yqux,yPS . These modified
jump rates are constrained by an admissibility condition:

Definition 3.1. A control process is admissible if, for any x0 P D, Px0 psXt P D @t ą 0q “ 1.
We denote the class of admissible control processesA.

Remark 3.1.1. It is not difficult to see that a control process is admissable iff b̄px, yq “ 0
when x P D, y < d.

The formulation of the controls requires consideration for flows into the boundary under
the control scheme. As such, we denote:

qpx, BDq “
ÿ

x<D

qpx, zq

Then consider the following cost problem:

Jpx0, b̄q “ lim sup
TÑ8

1
T
Ex0

»

–

ż T

0

»

–qpsXt, BDq `
ÿ

y,sXt ,yPD

qpsXt, yqL

ˆ

b̄psXt, yq

qpsXt, yq

˙

fi

fl dt

fi

fl

where L pxq “ x log x ´ x ` 1 for x “ 0 and L p0q “ 1. We notice two terms: the
first term penalizes the control for being near the boundary, and the second term penalizes
the control for varying from the original dynamics, similarly to relative entropy, or KL
Divergence. The optimal cost is infb̄PA Jpx0, b̄q. Theorem 3.2 will give a characterization
of J in terms of the below Bellman equation:

γ “ inf
b̄PA

#

ÿ

y,x,yPD

b̄px, yqrΓpyq ´ Γpxqs `
ÿ

y,x,yPD

qpx, yqL

ˆ

b̄px, yq

qpx, yq

˙

` qpx, BDq

+

(3.1.1)

Theorem 3.2. Suppose the process Xt is irreducible on D. Then

(i) If λ and ψ are as given in Theorem 2.7 and define Ψ “ ´ logψ. Then pλ,Ψq is a
solution to the Bellman equation (3.1.1).

(ii) Solutions to the Bellman equation are unique in the first variable, and unique in the
second variable up to constants.

(iii) If pλ,Ψq is a solution to the Bellman equation, then a process Yt with the following
control rates:

b˚px, yq “

$

’

&

’

%

0 x P D, y < D
qpx, yqeΨpxq´Ψpyq x, y P D, x , y
λ ` qpx, xq x, y P D, x “ y

(3.2.1)

is a Markov process with unique invariant measure µ “ ϕψ, where ϕ and ψ are from
Theorem 2.7.
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(iv) @x0 P D, Jpx0q “ λ

(v) The control defined in (iii) is optimal, in fact, for any x0 P D,

λ “ lim
TÑ8

1
T
Ex0

«

ż T

0

«

qpYt, BDq `
ÿ

y,Yt ,yPD

qpYt, yqL peΨpYtq´Ψpyqq

ff

dt

ff

Furthermore, the eigenvalue λ can be determined from the invariant measure µ by
the formula

λ “
ÿ

zPD

«

qpz, BDq `
ÿ

y,z,yPD

qpz, yqL peΨpYtq´Ψpyqq

ff

µpzq

Proof. Recall that ψ is a solution of
#

Lψpxq ` λψpxq “ 0 x P D
ψpxq “ 0 x P S zD

If we define Ψ “ ´ logψ, then by using our characterization of the infinitesimal generator
for discrete-state Markov chains, and multiplying by e´Ψpxq, we have

0 “
ÿ

y,x,yPD

qpx, yq

”

e´Ψpyq ´ e´Ψpxq
ı

` λe´Ψpxq `
ÿ

y,x,yPBD

qpx, yqe´Ψpxq

“
ÿ

y,x,yPD

qpx, yq

”

e´Ψpyq`Ψpxq ´ 1
ı

` λ ´ qpx, BDq

Then we use the trick that, for any a P R,

e´a ´ 1 “ ´ inf
bě0

tab ` L pbqu

So with a “ Ψpyq ´ Ψpxq, we have

λ “
ÿ

y,x,yPD

qpx, yq

„

inf
bxě0

tbxrΨpyq ´ Ψpxqs ` L pbxqu ` qpx, BDq

ȷ

“ inf
bpx,yqě0

#

ÿ

x,y,yPD

qpx, yqbpx, yqrΨpyq ´ Ψpxqs `
ÿ

y,x,yPD

qpx, yqL pbpx, yqq ` qpx, BDq

+

Finally, we find the optimal control b̄ by substitution b̄px, yq “ qpx, yqbpx, yq supported on
nonabsorption (i.e. b̄ : px P D, y < Dq ÞÑ 0). So (i) follows. ■

3.2 Backward Ergodic Control
Now consider another modified process rXt with new, controlled, jump rates b̃ “ tb̃px, yqux,yPS .

These modified jump rates are again constrained by an admissibility condition:
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Definition 3.3. A control process on the backward dynamics is admissible if, for any x0 P

D, Px0 prXt P D @t ą 0q “ 1. We denote this class of admissible control processes A˚,
which is independent of x0 by irreducibility.

Remark 3.3.1. We again notice that a control process is admissable iff b̃px, yq “ 0 when
x P D, y < d.

The formulation of the controls requires consideration for flows into the boundary under
the control scheme. Now, since L˚ has a 0th order term, we need an additional term on our
running cost, we define

cpxq “ qpx, BDq `
ÿ

yPd,y,x

rqpx, yq ´ qpy, xqs

Then we consider the following cost problem:

Jpx0, b̃q “ lim sup
TÑ8

1
T
Ex0

»

–

ż T

0

»

–cprXtq `
ÿ

y,rXt ,yPD

qpy, rXtqL

˜

b̃prXt, yq

qpy, rXtq

¸

fi

fl dt

fi

fl

where L pxq “ x log x´x`1 for x “ 0 and L p0q “ 1. The optimal cost is infb̃PA˚ Jpx0, b̄q.
Theorem 3.4 will give a characterization of J in terms of the below Bellman equation:

γ “ inf
b̃PA˚

#

ÿ

y,x,yPD

b̃px, yqrΓpyq ´ Γpxqs `
ÿ

y,x,yPD

qpy, xqL

ˆ

b̃px, yq

qpy, xq

˙

` cpxq

+

(3.3.1)

Theorem 3.4. Suppose the process Xt is irreducible on D. Then

(i) If λ and ϕ are as given in Theorem 2.7 and define Φ “ ´ log ϕ. Then pλ,Φq is a
solution to the Bellman equation (3.3.1).

(ii) Solutions to the Bellman equation are unique in the first variable, and unique in the
second variable up to constants.

(iii) If pλ,Φq is a solution to the Bellman equation, then a process Yt with the following
control rates:

b1px, yq “

$

’

&

’

%

0 x P D, y < D
qpy, xqeΦpxq´Φpyq x, y P D, x , y
λ ` qpx, xq x, y P D, x “ y

(3.4.1)

is a Markov process with unique invariant measure µ “ ϕψ, where ϕ and ψ are from
Theorem 2.7.

(iv) @x0 P D, Jpx0q “ λ

(v) The control defined in (iii) is optimal, in fact, for any x0 P D,

λ “ lim
TÑ8

1
T

Ex0

«

ż T

0

«

cpYtq `
ÿ

y,Yt ,yPD

qpy,YtqL peΦpYtq´Φpyqq

ff

dt

ff
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Furthermore, the eigenvalue λ can be determined from the invariant measure µ by
the formula

λ “
ÿ

zPD

«

cpzq `
ÿ

y,z,yPD

qpy, zqL peΦpYtq´Φpyqq

ff

µpzq

4 Fleming-Viot Particle Systems
One computing scheme for finding quasi-stationary distributions (described in [8]), is

based on a Fleming-Viot process. It is a class of Interacting Particle Systems (IPS) that
is defined for the QSD problem as follows:

Algorithm 4.1 (Fleming-Viot).

(1) Sample according to some distribution in D to determine the starting positions for N
particles whose law is the same as the unconditioned semigroup.

(2) Evolve the system while particles remain in D (and no particle is killed)

(3) When a particle is killed, replace it with a particle sampled on the uniform distribu-
tion over the other N ´ 1 particles.

(4) Repeat steps (2-3)

The goal of this section, then, will be to formalize the language relating to Fleming-Viot
systems, and to prove the following theorem:

Theorem 4.2. Suppose that an IPS system (see RAS), tXpiq
t u, evolves according to the rates

q with particle killing rates cpXpiq
t q. Further, suppose that particles are reborn according

to the distribution 1
N

řN
i“1 δXpiq pdxq. Then

˜

1
N

N
ÿ

i“1

δXpiq pdxq, Xp1q

¸

w
´Ñ

`

PxpZ P dxq,Z
˘

on r0,T s as N Ñ 8.

This scheme extends to linear functionals but may not extend to nonlinear functionals
because of the correlation of paths; in this case, N is critical, and we notice that approxi-
mations can do poorly near the boundary.

4.1 Formalism
We will primarily use the notation from [2]. Suppose we continue in a hard-killing

regime, where particles evolve according to rates Qx,y “ qpx, yq over a state space S , and
that particles are killed as soon as they enter states BD B S zD; D are the allowed states,
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and BD are the killed/forbidden states, which are absorbing. We denote c : D Ñ R` as
c : x ÞÑ qpx, BDq. As before, we define L to be the generator

L f pxq “ lim
δÑ0

1
δ
Er f pXδq ´ f pX0q|X0 “ xs

Then if X has law µPt (with Pt “ etQ), then its law at time t conditioned on non-absorption
is defined, over bounded test functions supported on D, as

µTt f “
µPt f
µPt1D

“

ř

xPD Pt f pxqµpxq
ř

xPD Pt1Dpxqµpxq

We set Tt f pxq “ δxTt f , and recall that a quasi-stationary distribution is a distribution sat-
isfying νTt f “ ν f for any test function f .

If, suppressing the dependence on N, ηpNqpkq “ ηpkq is the number of particles in state
k, the chain ηt is a Markov chain with state space

E “ EpNq “

!

η : D Ñ N0 :
ÿ

ηpkq “ N
)

and the generator of this chain is, again suppressing the dependence on N, N “ NpNq.
Since ηt has two dynamics that govern it—resampling according to cpηpkqq and moving
according to qpηpkq, yq—N will be

N f pηq “
ÿ

iPD

ηpiq

«

ÿ

jPD

p f pTiÑ jηq ´ f pηqqpQi, j ` cpiq
ηp jq

N ´ 1
q

ff

Where TiÑ jηpiq “ ηpiq ´ 1 and TiÑ jηp jq “ ηp jq ` 1. The empirical distribution of the N
particle system is

mpηqpdxq “
1
N

ÿ

kPD

ηpkqδtkupdxq

Since both increasing N and increasing t can improve the accuracy of the Fleming-
Viot estimate mpη

pNq

t q, there are two ways in which our particle system may be shown to
converge to the desired QSD:

mpη
pNq

t q

mpη
pNq

8 q mpµ0qTt

ν

Nt

N t
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Where convergences are in distribution. In order to show that the Fleming-Viot system
is asymptotically consistent, we will first show that with sufficiently large N, the correla-
tions between particles in the system goes to zero. We will then show that for fixed N,
the empirical measure of the system converges to the system’s stationary distribution in an
almost-sure sense. We are using the following definition of asymptotic consistency:

Definition 4.3. A sequence of estimators pθt
Nq is said to be an asymptotically consistent

estimator of a parameter θ if for any ε ą 0,

lim
NÑ8

lim
tÑ8
Pp|θt

N ´ θ| ą εq “ 0

4.2 Convergence of Time-Averaged Empirical Measure
We will start by showing that the empirical measure of a generic continuous-time chain

converges to the system’s stationary distribution. We do this first by showing the property
for a generic discrete-time chain with an ergodic transition kernel, using a convenient pair
measure, then use the semigroup of the continuous-time chain to generalize. The conve-
nient trick in the first theorem does not work for nonlinear operators, and is presented as a
testament to the difficulty of solving nonlinear problems, like the QSD problem. To pro-
vide bounds for the Fleming-Viot system, a more involved approach is necessary, which
will result not only in the convergence for both the normal and swapped chain, but also
rates of convergence.

Theorem 4.4. Let tXiuiPN be a Markov chain with an ergodic transition kernel P and
stationary measure π. Then

µN “
1
N

N
ÿ

i“1

δXi ñ π

almost surely.

Proof. Consider the pair measure

mNpA ˆ Bq “
1
N

N
ÿ

i“1

δpXi,Xi`1qpA ˆ Bq

Then clearly the difference between the first marginal rmNs1 “ µN and the second marginal
rmNs2 converges to zero:

prmNs1 ´ rmNs2qpAq “
1
N

rδXi pAq ´ δXN`1 pAqs Ñ 0

Additionally, by the Markov property, for any test function f

E

«

f pXi`1q ´
ÿ

yPS

PpXi, yq f pyq

ˇ

ˇ

ˇ

ˇ

ˇ

Xi

ff

“ 0

So we can compare rmNs2 f and rmNs1P f :
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P
`

|rmNs2 f ´ rmNs1P f | ě ε
˘

“ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPS

rmNs2pyq f pyq ´
ÿ

yPS

ÿ

xPS

Ppx, yqrmNs1pxq f pyq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

¸

“ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1
N

N
ÿ

i“1

f pXi`1q ´
1
N

N
ÿ

i“1

ÿ

yPS

PpXi, yq f pyq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

¸

ď
1
ε2E

»

–

1
N2

˜

N
ÿ

i“1

˜

f pXi`1q ´
ÿ

yPS

PpXi, yq, f pyq

¸¸2
fi

fl

˚
“

1
ε2E

»

–

1
N2

N
ÿ

i“1

˜

f pXi`1q ´
ÿ

yPS

PpXi, yq, f pyq

¸2
fi

fl

ď
4} f }8

ε2N

Where ˚
“ relies on a conditioning argument; for i ă j,

E

«˜

f pXi`1q ´
ÿ

yPS

PpXi, yq f pyq

¸ ˜

f pX j`1q ´
ÿ

yPS

PpX j, yq f pyq

¸ff

“ E

«˜

f pXi`1q ´
ÿ

yPS

PpXi, yq f pyq

¸

E

«

f pX j`1q ´
ÿ

yPS

PpX j, yq f pyq

ˇ

ˇ

ˇ

ˇ

ˇ

X j

ffff

“ 0

Then we have convergence along any subsequence, so by tightness, with probability 1,

rm8s2 f ´ rm8s1P f “ 0

So µ8pyq “
ř

x Ppx, yqµ8pxq and µ8 “ π with probability 1. ■

Extending to the continuous-time case, we have

Theorem 4.5. Let tXtutPR` be an irreducible Markov chain with transition rates Q over a
finite state-space. Then

1
T

ż

f pXtqdt ñ π f a.s.

Proof. Let Q1 “ supx
ř

y,x Qx,y ă 8. First, we know that if Nt is the number of jumps of
Xt in the interval p0, ts, and N˚

t is a Poisson process with jump rate Q1, then

PpNt ě nq ď PpN˚
t ě nq ď

Q1t
n
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Then if f is finitely supported and càdlàg, then any intervals for which the integral over f
is different from its left-Riemann sum must have at least one discontinuity, so,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
f pxqdx ´

T
n

n
ÿ

k“1

f p
T K
n

q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
T} f }8|tt P r0,T s : f ptq , limsÕt f psqu|

n

Then setting T “ N and n “ N3 and dividing by T ,
ˇ

ˇ

ˇ

ˇ

ˇ

1
N

ż N

0
f pxqdx ´

1
N3

N3
ÿ

i“1

f pi{N2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
} f }8|tt P r0,Ns : f ptq , limsÕt f psqu|

N3

So for any ε ą 0,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1
N

ż N

0
f pxqdx ´

1
N3

N3
ÿ

i“1

f pi{Nq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

¸

ď P

ˆ

Nt ě
εN3

} f }8

˙

ď
Q1} f }8

εN2

which is summable. So by Borel-Cantelli, and the previous theorem, we are done (to be
exact, we would need to use Borel Cantelli twice, once to show convergence of the integral
to the sum, and once to show that increasing the subdivision size does not meaningfully
change the rate of convergence of the empirical measures). ■

4.3 Convergence to the Conditioned Process
The pair-measure trick that was used in Theorem 4.4 does not work for chains that

evolve through nonlinear dynamics. Although over a small time interval ε, the evolution
of the empirical measure mpνtq evolves similarly to Tε, the pair measure does not evolve
according to Tε, as Tε is nonlinear (see §1.2.1). Instead, we need to demonstrate that as N is
large, the covariance between particles goes to 0, so that they are, in a sense, asymptotically
independent. Then, by a bias-variance argument, we are able to show that the evolution of
the empirical measure of the Fleming-Viot system follows Tt closely in N (and uniformly
in t), which yields the desired convergence. This is trivially extended to the time average.

The first result, relying on a coupling argument, is what [2] dubs ”Wasserstein expo-
nential ergodicity”. Let

λ “ inf
i,i1PD

˜

Qi,i1 ` Qi1,i `
ÿ

j,i,i1
Qi, j ^ Qi1, j

¸

ρ “ λ ´ psuppcq ´ infpcqq

Theorem 4.6 (Wasserstein Exponential Ergodicity). For any two ηt, η
1
t generated by Algo-

rithm 4.1,
WdpLawpηtq,Lawpη1

tqq ď e´ρtWdpLawpη0q,Lawpη1
0qq

Where d1 is a scaled version of total-variation distance:

d1pη, η1q “
1
2

ÿ

jPF

|ηp jq ´ η1p jq| “ NdTVpmpηq,mpη1qq
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andW is the Wasserstein distance

Wdpµ, µ1q “ inf
η„µ
η1„µ1

Erdpη, η1qs

Proof. We will construct a coupling of pηtq and pη1
tq, starting at η0 and η1

0 respectively,
which maximizes the probability of coalescence. If pξn

t q and pξ1n
t q are the positions of the

particles in each configuration, then we have the identity

d1pηt, η
1
tq “ |t1 ď k ď N|ηk

t , η
1k
t u|

We will then decompose the generator of the joint process

L f pη, η1q “
ÿ

i,i1, j, j1PD

Api, i1, j, j1qp f pTiÑ jη,Ti1Ñ j1η
1q ´ f pη, η1qq

as a generator associated with the dynamics and a generator associated to the killing (we
use L to emphasize that this is the generator of our designed coupled dynamics, and distinct
from the L dynamics that govern the original process). So A “ AQ ` Ah. Lets start by
describing how AQ couples the two systems, using the decomposition

ηpiq “ pηpiq ^ η1piqq ` pηpiq ´ η1piqq`

which decomposes the particles by particles that can be coupled and excess particles.

There are ηpiq ^η1piq particles that are at the same site i as their counterpart. We couple
these particles so that they move together, and

AQpi, i, j, jq “ pηpiq ^ η1piqqQi, j

If a particle is not paired, the good option would be to choose a particle that sees simi-
lar states as itself and maximize the chance they go to the same state; you could think of
even better couplings to improve the convergence estimate. We will use the more brazen
approach of pairing particles at random. For a η particle at i, the probability that its corre-
sponding pair particle is at site i1 is

pη1pi1q ´ ηpi1qq`

d1pη, η1q

since the numerator are the number of η1 particles that have not been pair off and the de-
nominator is the total number of not paired particles. So paired particles can coalesce in
two ways: by moving them simultaneously to the same state, or by moving one to the others
state and not changing the original dynamics. For a state j , i, i1, this gives

AQpi, i1, j, jq “
pηpi1q ´ η1pi1qq` ¨ pη1pi1q ´ ηpi1qq`

d1pη, η1q
pQi, j ^ Qi1, jq

AQpi, i1, i1, i1q “
pηpi1q ´ η1pi1qq` ¨ pη1pi1q ´ ηpi1qq`

d1pη, η1q
pQi,i1 q

AQpi, i1, i, iq “
pηpi1q ´ η1pi1qq` ¨ pη1pi1q ´ ηpi1qq`

d1pη, η1q
pQi1,iq
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Of course the particles can move with dynamics that do not increase the number of paired
particles, but we are concerned about the convergence, so we will omit these values of AQ.
We now proceed with the coupling of the killing dynamics.

Take a coupled pair from ηpiq^η1piq. Since the killing rates depend only on the position
of the particles, they have the same killing rates, so when one is killed, we can kill the other
and try to maximize the probability they move to the same state, say j. We may do this
with probability

ηp jq ^ η1p jq ´ δi, j

N ´ 1
So we set

Appi, i, j, jq “ p0piq pηpiq ^ η1piqq
ηp jq ^ η1p jq ´ 1i“ j

N ´ 1
For unpaired particles, we again pair them uniformly, and choose to kill them at the same
time when possible. Once killed, since the empirical distributions might differ, we send
them to the same particle with the same probability as before, this time without the δi, j

term:

Appi, i1, j, jq “ pηpiq ´ η1piqq` ¨
pη1pi1q ´ ηpi1qq`

d1pη, η1q
¨ pcpiq ^ cpi1qq

ηp jq ^ η1p jq
N ´ 1

To demonstrate that this is a valid coupling, we would need to show that when a function
f : E ˆ E Ñ R satisfies f pη, η1q “ gpηq for some g, then L f pη, η1q “ Lgpηq, and similarly
for η1. Continuing with the exponential convergence, we reach, decomposing L “ LQ `Lp

and using the fact that d1 is only changed in the cases we identified,

LQd1pη, η1q ď ´λd1pη, η1q

and
Lpd1pη, η1q ď psuppcq ´ infpcqqd1pη, η1q

So Ld1pη, η1q ď ρd1pη, η1q, and by the Kolmogorov forward equation and Gronwall’s in-
equality,

Erd1pηt, η
1
tqs ď e´ρtErd1pη0, η

1
0qs

And by the definition of Wasserstein distance, we are done. ■

The following two theorems are also found in [2]. We will omit the proofs of the
following theorems and corollary.

Theorem 4.7 (Covariance Estimates). If Eη represents expectation of a functional over a
system generated by 4.1 under initial distribution η, then for any k, l P D, η P E, and t ą 0,

ˇ

ˇ

ˇ

ˇ

Eη

„

ηtpkq

N
ηtplq

N

ȷ

´ Eη

„

ηtpkq

N

ȷ

Eη

„

ηtplq
N

ȷ
ˇ

ˇ

ˇ

ˇ

ď
2pQ1 ´ c1q

N ´ 1
1 ´ e´2ρt

ρ

Where, since we are working over a finite number of states,

Q1 “ sup
i

p´Qi,iq ă 8, c1 “ sup
i

pcpiqq
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Theorem 4.8 (Convergence to the Conditioned Process). There exist B,C ą 0 such that
for any initial distribution η P EpNq and µ P PpS q,

sup
}φ}8ď1

Eηr|mpηtqpφq ´ µTtφ|s ď CeBt
ˆ

1
?

N
` dTVpmpηq, µq

˙

Corollary 4.9. Under the same conditions as the previous theorem, we can find K0, γ ą 0
for which

sup
tě0

sup
}φ}8ď1

Eη r|mpηtqpφq ´ mpηqTtφ|s ď
K0

Nγ

Furthermore, if η is distributed according to the stationary distribution of the system ηN ,
then there exist K0 ą 0 and γ ą 0 such that

E r|mpηqpφq ´ νpφqs ď
K0

Nγ

5 Particle Swapping

5.1 Glauber Dynamics
In statistical mechanics, the likelihood of observing a system in equilibrium in a par-

ticular state is related to its energy; states with low energy are more likely and states with
high energy are less likely. In particular, the probability of a state i is proportional to e´Hpiq,
where H is the Hamiltonian: the energy of a particular state. Distributions that assign prob-
abilities in this manner are calleds Gibbs Distributions. A system for which such a state is
the equilibrium, and for which the dynamuics are reversible, is called a Glauber Dynamic
for that state. Recall the definition of reversibility:

Definition 5.1. A Markov chain Xt is said to be reversible with respect to a distribution π if
the backwards distribution of the chain, starting at any T ą 0, is the same as the forwards
distribution when both are started in distribution π. When Xt is has transition rates Ptpx, yq,
we have

PpXT “ y|XT´t “ xqPpXT´t “ xq “ PpXT´t “ x|XT “ yqPpXT “ yq

“ñ Ptpx, yqπx “ Ptpy, xqπy (Detailed Balance Equation)

We notice here that detailed balance implies stationarity. From this we get Kolmogorov’s
criteria; for t jiu P S ,

qp j1, j2qqp j2, j3q ¨ ¨ ¨ qp jn´1, jnqqp jn, j1q

“ qp j1, jnqqp jn, jn´1q ¨ ¨ ¨ qp j3, j2qqp j2, j1q

Furthermore,

πp jnq “ πp j1q
qp j1, j2qqp j2, j3q ¨ ¨ ¨ qp jn´1, jnq

qp jn, jn´1q ¨ ¨ ¨ qp j3, j2qqp j2, j1q

24



Now take a finite state space S, and a reference assignment ν P p0,8qS of weights, not
necessarily summable (for our purposes, ν will be uniform). We are given a Hamiltonian
H : SÑ r0,8q that satisfies

Zpβq B
ÿ

xPS

e´βHpxqνx ă 8 @β P p0,8q

Z is called the partition function, and encodes all the relevant physical information of the
underlying distribution; intuitively, the higher the temperature, the more likely high energy
events are. The gibbs state γβ is the probability vector where

γpβqx “
1

Zpβq
e´βHpxqνx

The Glauber dynamics corresponding to this distribution will not be unique, in par-
ticular, they depend on some communication matrix A that has non-negative entries, with
diagonal entries of 0. Furthermore A will be irreducible:

suppAnqx,y ą 0 @px, yq P S2

and A will be reversible with respect to ν, so that

vxAx,y “ vyAy,x

As a final condition, for the rates to be summable we need
ÿ

yPS

e´βHpyqAx,y ă 8

When ν is uniform, A denotes the states that are allowed to communicate.

Lemma 5.2 (Glauber Dynamics). Given a reference distribution ν, Gibbs measure γpβq,
and communication matrix A, the rates given by

qpx, yq “ e´βpHpyq´Hpxqq`

Ax,y

are reversible with respect to γpβq

Proof.

γpβqxQx,y “
1

Zpβq
e´βpHpxq`pHpyq´Hpxqq`qνxAx,y

“
1

Zpβq
e´βpHpyq_HpxqqνxAx,y

“
1

Zpβq
e´βpHpxq_HpyqqνyAy,x

“ γpβqyQy,x

■
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5.2 Setup
Suppose that a nearest-neighbor chain Xt evolves according to the rates qpx, yq, or

equivalently, has generator:

L f pxq “
ÿ

y,x

qpx, yqr f pyq ´ f pxqs

and is killed using soft killing rates cpxq. We recall from Cor 2.6 that L has adjoint

L˚ “
ÿ

y,x

r f pyq ´ f pxqs ` f pxq
ÿ

y,x

rqpy, xq ´ qpx, yqs

Allowing ϕ and ψ to denote the QSD of this forward chain, as in Theorem 2.7—with Φ and
Ψ denoting the corresponding energy potentials taking values in sR— ϕ and ψ will be the
unique solutions to:

´Lψpxq ` cpxqψpxq “ λψpxq (5.2.1)
´L˚ϕpxq ` dpxqϕpxq “ λϕpxq (5.2.2)

The time reversal of Xt, say Yt, is the chain with transitions qpy, xq. If Yt is killed
according to rate dpxq “ cpxq ` hpxq, where h is the 0th order term of L˚, we see that the
QSD of Yt also solves (5.2.1). Then if tXpiq

t un
i“1 and tYpiq

t un
i“1 denote IPS converging in

measure to the QSD, as in Theorem (4.2), then we can pair particles with

pX,Yq
piq
t B pXpiq

t ,Ypiq
t q

so the law of pX,Yq—an abuse of notation for a chosen pX,Yqpiq—converges weakly to the
distribution ψpxqϕpyq “ e´pΨpxq`Φpyqq.

5.3 Swapping Method
If we consider a pair of particles as an element in S ˆ S , then Lemma (5.2) tells us that,

with uniform reference measure, the swaps

rx,y B qppx, yq, py, xqq “ e´pHppy,xqq´Hppx,yqqq`

Apx,yq,py,xq

“ e´pΨpyq`Φpxq´Ψpxq´Φpyqq`

Apx,yq,py,xq

are reversible under stationarity for any A that is reversible with respect to ν, which in this
case is uniform, so Ai, j “ A j,i. These rates do not change the marginal distributions of the
individual particles under stationarity.

A priori, these rates are not known, and involve the QSDs themselves. However, the
forward and backward control problems allow for computation of these rates without need-
ing the distributions.

Proposition 5.3. Nearest-neighbor rate matrices satisfying a particular stationary distri-
bution are unique up to multiples of the rates.
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Theorem 5.4 (Particle Swapping Rates).

e´pΨpyq`Φpxq´Ψpxq´Φpyqq`

“

«

n
ź

1

qpzi`1, ziq

qpzi, zi`1q

ff

_ 1 “
πpyq

πpxq
_ 1

Where tziu
n
1 is a path with positive probability from x to y. Or equivalently, a sequence with

qpzi, zi`1q ą 0 @i P rn ´ 1s where x “ z1 and zn “ y.

Proof. By Theorems 3.2 and 3.4, the rates b˚px, yq and b1px, yq are nearest-neighbor rates
with the same stationary distribution, ϕpxqψpxq. Since such rates are unique up to constant
multiples (by the above proposition), and the total rates are the same:

b˚px, xq “ b1px, xq “ λ ` qpx, xq

The rates are the same, so for any x that communicates with y in the original chain, neither
being hard killed states (nearest neighbors),

b˚px, yq “ qpx, yqeΨpxq´Ψpyq

“ b1px, yq “ qpy, xqeΦpxq´Φpyq

so

e´pΨpyq`Φpxq´Ψpxq´Φpyqq “
qpy, xq

qpx, yq

By telescoping along these states, we have the first equality, and the second equality just
follows from the Kolmogorov criteria.

■

In principle, this would work for any irreducible chain for which we can make the same
uniqueness argument, and there are adjustments to the reference measure and communica-
tion matrix that can be made, perhaps to improve convergence.

5.4 Consistency of the Swapped System
The argument for the asymptotic consistency of the typical Fleming-Viot particle sys-

tem relied on a propagation-of-chaos argument. After showing that the system mixed suf-
ficiently well, it was shown that the particles were asymptotically uncorrelated, so that
each particle, when resampled, effectively sees the averaged dynamics. Then from a bias-
variance argument, the consistency was reached. The result we would eventually like to
prove is as follows:

Conjecture 5.5. If pη, ηqA,N is distributed according to the invariant distribution of a N-
particle swapped Fleming-Viot system with swapping rate A, then there exists a AN ą 0,
such that AN Ñ 8 and for any sequence BN ď AN

lim
NÑ8

E r|mpηBN ,Nqpφq ´ νpφq|s “ 0

for any }φ}8 ď 1.

27



5.5 Numerics
To demonstrate the efficacy of the swapping method, we will show that for a simple

particle system with known quasi-stationary distribution and clear metastability issues, the
swapped system explores the state space more, holding computations fixed, and seems con-
sistent in finding the QSD. Let Xt be an interpolated diffusion process over r1, 1s satisfying
the SDE (see 7.2)

dXt “ UpXtqdt ` dWt

where
Upxq “ ´11 ¨ sinp3πxq

with a mesh size of h “ 0.05 and reflective boundary conditions. Then using linear algebra
(as discussed in 2.8) we can compute the quasi distribution for Xt if it is killed at state
B “ t1u (Figure 1).

Figure 1: Gibbs distributions for the interpolated diffusion process.

If the swapping multiplier is set to A “ 1, then using the typical estimator for the QSD
from the Fleming-Viot particles, averaged over time, our numerics indicate that for large
T , the estimator appears to converge to the QSD (Figure 2).

5.5.1 Well Method

To determine whether this is, in a suitable sense, a better estimator for the QSD, we
will measure how much individual particles explore the state space. The way we do this
is by defining “wells” of the state space to be places where the dynamics make it hard for
particles to escape, which corresponds to peaks of ϕ or troughs ofΦ. To avoid doing this by
hand, we set a cutoff for the energy potential by some average value over the states, and find
the connected components of the states with potential lower than this. These components
are seen in Figure 3: a contiguous red line is a connected component, and a red dot is a
state in that component.
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Figure 2: Consistency of the swapped Fleming-Viot particles.

In order to determine whether a particle has traversed between wells, we label particles
by their last explored well, and note a “well-to-well jump” when a particle moves into a
well that is different than their last explored well. Normalizing the number of well-to-well
jumps by the computations performed, we notice that the swapped system moves between
wells at a significantly higher rate, sometimes 3 to 4 times as often (Figure 4).

It should be noted that the dynamics of a swapped system comprise a smaller proportion
of computations than a non-swapped system, so normalizing by computations, in a sense,
favors the non-swapping system.
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Figure 3: Construction of wells.

Figure 4: Comparison of the frequency of well-to-well jumps between a typical Fleming-
Viot system and a swapped system.
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6 Infinite Swapping

6.1 Two-Time-Scale Markov Chains
The theory of two-time-scale Markov chains is based on a chain whose generator is

Qε “
1
ε

rQ ` pQ (6.0.1)

As ε Ñ 0, the dynamics of rQ dominate the chain over time scales of order ε, while for
order 1 time intervals, the dynamics of rQ are averaged, and pQ drives the dynamics. Lets
formalize what we would expect this to look like. First, we impose a condition on rQ

Definition 6.1. A rate matrix rQ is said to be locally irreducible if rQ is block diagonal
by irreducible sub-matrices, possibly after permuting indices. In other words, rQ has a
partition tS ku by non-communicating irreducible classes.

Let |tS ku| “ l and |S k| “ mk. Then when ε is small, the average amount of time
that the chain spends in the ith element of |S k| before evolving by pQ is νk

i , where νk is
the stationary distribution of rQk, the S k minor of rQ. We would expect the dynamics of pQ
between irreducible classes to be, reordering the indices so that rQ is block-diagonal,

sQ “

¨

˚

˚

˚

˝

ν1

ν2

. . .

νl

˛

‹

‹

‹

‚

pQ1̃

where

1̃ “

¨

˚

˚

˚

˝

1m1

1m2

. . .

1ml

˛

‹

‹

‹

‚

So if ϑk is the marginal representing the time spent in a particular class, we expect ϑ to
evolve by sQ:

d
dt
ϑptq “ ϑptq sQ, ϑkp0q “ µpS kq

and so the probability that a chain starting with distribution µ is at site pk, jq at time t, where
k is the irreducible class and j is an index of the class, is approximately νk

jϑ
kptq.

The following theorem is Corollary 4.31 of [4]. It is a generalization of a much
more general theorem on the distribution of possibly inhomogenous two-time-scale Markov
chains, which approximates the distribution to higher order, depending on the regularity of
the semigroup.
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Theorem 6.2. Suppose that, for a Markov chain pXtq over finite state space S is locally
irreducible through a partition tS ku, then there exist K, κ0 ą 0 such that

|µPε
t 1pk, jq ´ νk

jϑ
kptq| ď K

´

εpt ` 1q ` exp
´

´
κ0t
ε

¯¯

(6.2.1)

where 1pk, jq is one in class k and index j and zero otherwise, LawpX0q “ µ, and Pε
t is the

semigroup of Qε.

6.2 Infinite Swapping Limit
The last theorem directly applies to our swapping case. It is important to notice that

as defined, our swapping dynamics do not have well-defined distributions. This is because
as A, the swapping parameter from Lemma 5.2, gets large, the pairs of particles oscillate
quickly between two states; there is no well-defined dynamic, as the sample paths become
erratic as A Ñ 8.

To fix this issue, we swap the dynamics of a particle pair, rather than their locations.
Formally, we define new random variables S pnq

t that take values over t1,´1u. S pnq

t will rep-
resent whether the particle Xpnq

t is a forwards or a backwards particle, so that, for instance,
when S pnq

t “ 1, Xpnq

t is a forward particle and is in a forward Flemming-Viot system with
all other Xpkq particles for which S pkq

t “ 1 and all other Ypkq particles for which S pkq

t “ ´1.
These are clearly the same processes, just with different “accounting”.

This system is exactly a two-time-scale Markov chain where the high-frequency process
is a locally irreducible process. To be precise, the elements of Qε represent transitions in
the entire configuration of the swapping system, and thus can be indexed by the positions
of all particles and the configuration of S pnq; in other words we index over

F “ tς : 2N Ñ D ˆ t1,´1u | ς2pnq “ ´ς2pn ` N mod 2Nqu

The irreducible minors of rQ are just 2ˆ2 matrices that represent swaps between forward
and backward configurations for one pair at one location. Since the swapping dynamics do
not change the positions of the particles, but rather the polarity S , the quotient process sQ is
well-defined as a dynamic over the quotient pX,Yq. It is easiest to parameterize the partition
by two indices, the first representing the pair of particles (with N possibilities) that is to be
moved, and the second representing the location of each particle (with |D|2 possibilities):

rQpn,px,yqq “

ˆ

´rx,y rx,y

ry,x ´ry,x

˙

This way of describing the dynamics is inefficient from a combinatorial perspective, since
many of the swapping and evolution values are duplicated (swapping rates for pairs do not
depend on the other particle’s positions, for instance).

Invoking Theorem 6.2, we see that sending ε Ñ 0, the pX,Yq dynamics of the system
pX,Y, S q converge to the following system:
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Algorithm 6.3 (Infinite-Swapping System). Let

νx,y “
rx,y

rx,y ` ry,x

Then the infinite swapping limit of the swapped Fleming-Viot system has the following rates

• If pX,Yqpnq “ px, yq then X moves through its dynamics to z with rate

νx,yQx,z ` νy,xQz,x

.

• If pX,Yqpnq “ px, yq then Y moves through its dynamics to z with rate

νx,yQz,y ` νy,xQy,z

.

• If pX,Yqpnq “ px, yq, then X is killed with rate

νx,ycpxq ` νy,xdpyq

Once killed, it chooses another pair uniformly, and then, if the pair is at positions
pq, pq, it moves to q with probability νq,p and p with probability νp,q

• If pX,Yqpnq “ px, yq, then Y is killed with rate

νx,ydpyq ` νy,xcpxq

Once killed, it chooses another pair uniformly, and then, if the pair is at positions
pq, pq, it moves to q with probability νp,q and p with probability νq,p

And the following is an asymptotically consistent estimator of the QSD ϕ:

ϕpdxq “
1
T

ż T

t“0

N
ÿ

n“1

νXpnq
t ,Ypnq

t
δXpnq

t
pdxq ` νYpnq

t ,Xpnq
t
δYpnq

t
pdxq dt

7 Applications

7.1 Standard Markov-Chain Monte Carlo
The simplest application of this swapping system is in performing MCMC on a normal

Gibbs measure. The rationale for using such a system is simple: we can use the reversed
dynamics of a system to reduce the metastability issues of a Metropolis-Hastings estimator
without knowing any additional structure about the chain. The construction through QSD
was necessary to formalize how the backward dynamics interacted with the Fleming-Viot
system. A Fleming-Viot system that approximates a stationary distribution is just a set of
N independent particles; by introducing the backwards system, we allow these particles to
interact in a way that is constructive in finding the distribution.
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7.2 Diffusions and their Discrete-state Approximations
Quasi-stationary distributions may exist in absorbed processes whose state space may

be finite, countable, or uncountable and whose time indices may be countable or uncount-
able. In most cases, the diffusion processes—a subset of continuous state continuous-time
Markov processes whose paths are continuous—are the easiest to manipulate, despite the
relatively steep theory. For this reason, it will be prudent to consider the effects of our
improvements on estimators of QSDs on these spaces. When we computationally model
these effects, discrete-state approximations will be critical.

The SDE,
dXt “ ´Xtdt ` dWt, X0 “ 0

where Wt is a Weiner process, describes a standard Ornstein–Uhlenbeck process. This
differential notation represents integrals on time so that Xt “

şt
0 ´Xsds ` Wt ` X0. One can

see that such a process has two terms: a symmetric diffusion term, and a term that pushes
the process back to the origin.

Our motivation for such a process is simple: although a one-dimensional Browninan
motion is always recurrent—it can be shown that for any ϵ ą 0, Wt takes strictly positive
and negative values on p0, ϵq—its discrete-time analog is not. Adding an inward drift term
makes it positive recurrent, which is important for existence of a stationary distribution in
the diffusion process.

Proposition 7.1. It can be shown, using variation of parameters, that the explicit equation
for this process is

Xt “ X0 e´t `

ż t

0
es´tdWs

Proof. First, we notice that

9Xh
t ` Xh

t “ 0 ñ Xh
t “ Ce´t

So, by variation of parameters, letting Xt “ vptqe´t yields:

v1ptqe´t ´ vptqe´t ` vptqe´t “
dWt

dt
ż t

0
v1ptqdt “

ż t

0
es dWs

ds
ds

vptq ´ vp0q “

ż t

0
esdWs

Xt “ vp0qe´t `

ż t

0
es´tdWs, vp0q “ X0

■

Returning to the concept of generators, it can be shown that the generator for our stan-
dard Ornstein-Uhlenbeck process is L f pxq “ ´x f 1pxq ` 1

2 f 2pxq. To find a discrete-state
analog of the diffusion process, we consider jumps on the lattice hZ given by the process
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tXh
t u and design jump rates so that Lh f « L f “ ´x f 1pxq ` 1

2 f 2pxq. To this end, we use
difference estimates:

f 1pxq «

#

f px`hq´ f pxq

h
f pxq´ f px´hq

h

f 2pxq «
f px ` hq ´ 2 f pxq ` f px ´ hq

h2

The expression for f 2pxq is easily verified using l’Hopital and f P C2. Using Prop 2.5
and the generator for our diffusion process, we obtain new jump rates. We split our f 1pxq

term into two cases to ensure that we are left with a generator that represents a legitimate
process in the form rhpx, yqr f pyq ´ f pxqs.

Lh f pxq “ ´1xą0
hx
h2 r f pxq ´ f px ´ hqs

´ 1xă0
hx
h2 r f px ` hq ´ f pxqs

`
1
2

f px ` hq ´ 2 f pxq ` f px ´ hq

h2

ó

rhpx, x ˘ hq “
1
h2

„

¯xh1t¯xą0u `
1
2

ȷ

Here, when x is negative, we ensure the generator takes the required form by using the
r f px ` hq ´ f pxqs expression to ensure our rates will be positive (´x ě 0). This process is
called upwinding.

Staying in our discrete-state process, we have seen that we can manipulate the expres-
sion xg,L f y “ xL˚g, f y to find the ℓ2 adjoint for L, which for discrete-states is character-
ized:

L˚ f pxq “
ÿ

yPX

qpy, xqr f pyq ´ f pxqs ` f pxq
ÿ

yPX

rqpy, xq ´ qpx, yqs

where q is the rate matrix on the underlying process.

8 Other Possible Improvements

8.1 Change of Reference Measure
To improve the approximations, we could use a reference measure other than the reg-

ular Lebesgue/uniform measure, and will then find the Lebesgue/uniform adjoint of that
new operator, which will be pL˚

ρ q˚. After simulating Fleming-Viot particles on this new
process (we saw that Generators characterize processes from Lemma 1.10) renormalization
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will yield an approximation of the QSD of the original process.

In a general setting, for any reference measure ρpdxq that is absolutely continuous with
respect to the lebesgue measure, so that ρpdxq “ ρpxqdx, we will have:

L˚
ρ f pxq “

1
ρpxq
L˚p fρqpxq

and if rφ and φ represent eigenfunctions in L2pρq and L2 respectively, then rφ “ φ{ρ [1]. We
have a proof of both statements, as well as a formulation of the adjoint in the finite-state
case, below.

Proof. We recall the adjusted inner product

x f pxq, gpxqyρ “

ż

f pxqgpxqρpdxq “
ÿ

xPS

f pxqgpxqρpxq

The first statement follows; take any test function gpxq, then

xL˚
ρ f , gy “ xL˚

ρ f ,
1
ρ

gyρ “ x fρ,L
1
ρ

gy “ x
1
ρ
L˚p fρq, gy

Furthermore, if ψ is an eigenfunction of L˚

L˚
ρ

`

rψ
˘

“ L˚
ρ

ˆ

ψ

ρ

˙

“
L˚pψq

ρ
“
ψ

ρ
“ rψ

In the finite state case, with rates qpx, yq, we use this expression to find the general ad-
joint, and manipulate the expression to find L˚

ρ . Continuing with the aforementioned inner
product,

“
ÿ

xPS

«

ÿ

yPS

qpx, yqgpyq

ff

f pxq

“
ÿ

yPS

ÿ

xPS

qpx, yq f pxqgpyq

“
ÿ

xPS

«

ÿ

y,x

qpy, xq f pyq ´
ÿ

y,x

qpx, yqρpxq

ff

gpyq

“
ÿ

xPS

«

ÿ

y,x

qpy, xqr f pyq ´ f pxqs ` f pxq
ÿ

y,x

rqpy, xq ´ qpx, yqs

ff

gpyq

and we see the expression of L˚. Then for a reference measure ρ, our earlier conclusion
leads to:

L˚
ρ f pxq “

1
ρpxq

«

ÿ

y,x

qpy, xqr f pyqρpyq ´ f pxqρpxqs ` f pxq
ÿ

y,x

rqpy, xq ´ qpx, yqs

ff

■
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Here, it is important to note the distinction between operators and generators. Not all
operators can be represented as generators of a Markov chain, and although all genera-
tors are operators, heuristically, we interpret generators as objects that encode information
about some underlying process (specifically, the expected infinitesimal change in functions
with time).

In the context of a diffusion, to see how the dual generator in effect “reverses” the dy-
namics of the process, and the effects of our change of reference measures, we could study
the following relationship:

L Lh pLhq˚ pLhq˚
ρ

H Hh pHhq˚ ppLhq˚
ρ q˚

?

Here, our new operator H , represents the generator for the reversed diffusion process:
H f pxq “ x f pxq ` 1

2 f 2pxq, a process that, trivially, has no limiting distribution. For this
uni-modal distribution, we could look at three reference measures:

(1) Lebesgue measure: ρpdxq “ dx. Here, our process will not change, of course, and
the dynamics will still push inwards.

(2) Stationary distribution: ρpdxq “ e´ x2
2ϵ dx. Here, we expect the dynamics of our new

process to be reversed (« H). The increased frequency of killings and consolidation
of particles towards the boundary is expected to improve the Fleming-Viot approxi-
mation.

(3) Weakened version of stationary distribution: ρpdxq “ e
´x2
ϵ dx. Here, we expect our

new dynamics to be a middle ground between L and H , a Weiner process with no
drift.

8.2 Associated Markov Chain
We now consider the uniform adjoint of the reference-measure adjoint (which is also

the operator whose adjoint is L˚
ρ as the adjoint operator is an involution) for the finite-state

CTMC. Using the identity xL˚
ρ gpxq, f pxqy “ xgpxq, pL˚

ρ q˚ f pxqy, and the proof from the
last section, we compute the second adjoint as

xL˚
ρ gpxq, f pxqy “

ÿ

xPS

ÿ

yPS

qpy, xq
ρpyq

ρpxq
gpyq f pxq

“
ÿ

yPS

«

ÿ

xPS

qpy, xq
ρpyq

ρpxq
f pxq

ff

gpyq
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“ñ pL˚
ρ q˚ f pxq “

ÿ

yPS

qpx, yq
ρpxq

ρpyq
f pyq Ð´ Matrix form

“
ÿ

y,x

qpx, yq
ρpxq

ρpyq
f pyq ´

ÿ

y,x

qpx, yq f pxq

`
ÿ

y,x

qpx, yq
ρpxq

ρpyq
f pxq ´

ÿ

y,x

qpx, yq
ρpxq

ρpyq
f pxq

“
ÿ

y,x

qpx, yq
ρpxq

ρpyq
r f pyq ´ f pxqs ` f pxq

ÿ

y,x

qpx, yq

„

ρpxq

ρpyq
´ 1

ȷ

“
ÿ

y,x

qpx, yq
ρpxq

ρpyq
r f pyq ´ f pxqs `

˜

ÿ

yPS

qpx, yq
ρpxq

ρpyq

¸

f pxq

B Lρ f pxq ` hρpxq f pxq

Here, Lρ is the generator of the process with rates qpx, yqρpxqρpyq´1, and hρ is a 0th order
term, so the eigenvalue problem, which we have shown to be equivalent to the original
QSD after renormalization, can (??) be solved using a Flemming-Viot scheme.

8.3 Speedup
It can be shown that for non uniform ρ1 “ ρ´1, Dx such that hρ1 pxq ă 0. Take x “

arg maxz ρpzq. Then since ρ is irreducible

pQρqpxq “ qpx, xqρpxq `
ÿ

y,x

qpx, yqρpyq

“
ÿ

y,x

qpx, yqpρpyq ´ ρpxqq ă 0

So the conclusion holds, as

hρ1 pxq ă 0 ðñ
ÿ

yPS

qpx, yq
ρpyq

ρpxq
ă 0

ðñ Qρ ă 0 at x

In order to perform Flemming-Viot when the 0th order term is not non-negative, there
are two main approaches. One involves introducing particles, rather than killing them, at
rates determined by the negative positions/magnitudes of the 0th order term. Another is to
add a constant to the 0th order term, which requires a correction to the computed killing
rate.
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