
Swapping Methods for Fleming-Viot Estimators
of Quasi-Stationary Distributions

Itamar Fiorino
Paul Dupuis – Advisor
Kavita Ramanan – Second Reader

Brown University – Department of Applied Mathematics

https://brown.edu


Setup

Take a finite set |S| = d and linear operator (matrix) L : Rd → Rd so that, as
a matrix L = Q, its entries are non-negative. Let L∗ be its adjoint (matrix
transpose). Say we want to solve the finite-dimensional eigenvalue problem

L∗ϕ = αϕ

for some maximal α > 0 such that ∥ϕ∥1 = 1.

These problems are amenable to computation from probabilistic methods,
in particular through Markov Chain Monte Carlo (MCMC) methods.
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Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is (heuristically) a random
process (Xt)t>0 whose distribution in the future depends only on the
present.

A non-example would be the position of a particle shot out of a
cannon, where the position and trajectory of the cannon are random.

P(Xt+s = y|Ft) = P(Xt+s = y|Xt) = Ps(Xt, y) (time-homogeneous)

Where Ft is the information in the system up to time t (so that (Xt) is
a (Ft)-adapted process).
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Continuous Time Markov Chains

CTMCs are normally further required to have some path-wise
continuity properties, and are usually constructed via. rate-matrices
Q, representing the rate that a particle jumps between states. Q
satisfies

• Off-diagonal elements are nonnegative
• Rows sum to 0

Pε = I+ εQ+ o(ε)
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Continuous Time Markov Chains

Pε = I+ εQ+ o(ε)

The generator of the process is

Lf(x) = E [f(Xδ)− f(X0)|X0 = x]
δ

which corresponds directly with Q.
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Markov Chain Monte Carlo

If L is a rate matrix, then the empirical measures of sample paths of
chains with generator L approach the solution to

L∗ϕ = 0

These eigenvectors are exactly stationary distributions that satisfy.

Pπ(Xt ∈ A) = π(A)

In MCMC, we want to draw samples from a stationary distribution,
typically one with many states, or compute expectations over them.
To do this, we construct dynamics that we know have the stationary
distribution and sample (Metropolis-Hastings).
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Markov Chain Monte Carlo

In MCMC, we want to draw samples from a stationary distribution,
typically one with many states, or compute expectations over them.
To do this, we construct dynamics that we know have the stationary
distribution and sample (Metropolis-Hastings).

Gibbs distribution:
ϕ ∝ e−

Φ
β

β is a temperature parameter
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Generalization

If L is just any matrix with positive off-diagonal elements, we can
turn it into a rate matrix by taking from diagonal elements, so
without loss of generality we can solve

L∗ϕ(x) + c(x)ϕ(x) = αϕ(x) ∀x ∈ S

Where L is a rate matrix.
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Quasi-Stationary Distributions

What if (Xt) takes values over S = D ∪ ∂D, and once particles enter
∂D, they never leave? The chain is no longer irreducible, but we can
look at Quasi-Stationary Distributions (QSD):

Pν(Xt ∈ A|τ > t) = ν(A)

τ = inf{t > 0 : Xt ∈ ∂D}

If c(x) = q(x, ∂D) and L is the generator for the process in D without
transitions into ∂D, our QSD will solve

L∗ϕ(x) + c(x)ϕ(x) = αϕ(x) x ∈ D

for a maximal eigenvalue α and ∥ϕ∥1 = 1.

Perron-Frobenius theorem: Existence & uniqueness.
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Fleming-Viot Particle Systems

Several ways of estimating QSD. One is (based on) a Fleming-Viot
system, an Interacting Particle System:

• Take N particles distributed in D
• Evolve independently according to L
• When a particle is killed according to the killing rate c, resample
uniformly over the other N− 1 particles.
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Metastability

Metastability: When there exist areas of the state space that do not
communicate well.
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Metastability

One way to overcome metastability when estimating Gibbs measures
is Parallel Tempering also called Replica Exchange MCMC.

• Swap a particle between different temperatures at appropriate
rates (maintaining stationary distributions).

Figure 1: Tempering in metallurgy [2]
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Dual Problems

If L is a generator for the process, c is the killing rate, h is the
normalizing term that turns L∗ to a rate matrix, and d = c+ h, then
there are two eigenvalues associated with the QSD problem:{

−Lψ(x) + c(x)ψ(x) = λψ(x)
−L∗ϕ(x) + d(x)ϕ(x) = λϕ(x)

(1)

ϕ is the QSD, that is computed with the dynamics of L and killing c,
and ψ is a vector that represents the state-dependent exit/decay
rate, computed via the L∗ dynamics and killing by d.
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Swapping

The dynamics associated with L∗ are reversals of L, so we expect the
dynamics to spend more time in low energy areas of the state space,
exactly where the original chain does not explore.

Question: can we develop a swapping scheme that respects the
distribution of the independent forward/backward systems (ϕ× ψ)?
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Swapping

Yes! Pair up particles, and swap them according to the rates

rx,y = e−(Ψ(y)+Φ(x)−Ψ(x)−Φ(y))+

where Φ and Ψ are the energy potentials from (1), and rx,y is the rate
that a pair at positions (x, y) is swapped to positions (y, x).

Theorem (Particle Swapping Rates)

e−(Ψ(y)+Φ(x)−Ψ(x)−Φ(y))+ =

[ n∏
1

q(zi+1, zi)
q(zi, zi+1)

]
∨ 1 = π(y)

π(x) ∨ 1

Where π is the stationary distribution in D prior to killing, and {zi}n1 is
a path with positive probability from x to y, or alternatively a
sequence with q(zi, zi+1) > 0 ∀i ∈ [n− 1] where x = z1 and zn = y.
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Improvements in Metastability

Figure 2: The well test for comparing metastability of chains
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Consistency

From the literature [1], we have

Corollary (Uniform Consistency Bound)
We can find K0, γ > 0 for which

sup
t≥0

sup
∥φ∥∞≤1

Eη [|m(ηt)(φ)−m(η)Ttφ|] ≤
K0
Nγ

Furthermore, if η is distributed according to the stationary
distribution of the system ηN, then there exist K0 > 0 and γ > 0 such
that

E [|m(η)(φ)− ν(φ)] ≤ K0
Nγ
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Consistency (of swapping)

Conjecture
If (η, η)A,N is distributed according to the invariant distribution of a
N-particle swapped Fleming-Viot system with swapping rate A with
first marginal ηA,N, then there exists a sequence (AN) > 0, such that
AN → ∞ and for any sequence BN ≤ AN

lim
N→∞

E [|m(ηBN,N)(φ)− ν(φ)|] = 0

for any ∥φ∥∞ ≤ 1.
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Infinite Swapping

The theory of two-time scale Markov processes asks what happens
when

Q =
1
ε
Q̃+ Q̂

and ε→ 0.

To decompose the rates into dynamics/swapping, we need to define
a new variable, (S(n)t ) ∈ {−1, 1} representing the order of the pair n at
time t.

Why infinite swapping? Computational efficiency.
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INS Algorithm

νx,y =
rx,y

rx,y + ry,x

• If (X, Y)(n) = (x, y) then X moves through its dynamics to z with
rate

νx,yQx,z + νy,xQz,x

.
• If (X, Y)(n) = (x, y) then Y moves through its dynamics to z with
rate

νx,yQz,y + νy,xQy,z

.
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INS Algorithm

• If (X, Y)(n) = (x, y), then X is killed with rate

νx,yc(x) + νy,xd(y)

Once killed, it chooses another pair uniformly, and then, if the
pair is at positions (q,p), it moves to q with probability νq,p and
p with probability νp,q

• Similar for Y

An asymptotically consistent estimator of the QSD ϕ:

ϕ(dx) = 1
TN

∫ T

t=0

N∑
n=1

νX(n)t ,Y(n)t
δX(n)t

(dx) + νY(n)t ,X(n)t
δY(n)t

(dx) dt
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Questions?
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