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Take a finite set |S| = d and linear operator (matrix) £ : R? — R so that, as
a matrix £ = Q, its entries are non-negative. Let £* be its adjoint (matrix
transpose). Say we want to solve the finite-dimensional eigenvalue problem

L'¢=a¢

for some maximal o > 0 such that ||¢[j: = 1.
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These problems are amenable to computation from probabilistic methods,
in particular through Markov Chain Monte Carlo (MCMC) methods.
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P(Xers = Y|Ft) = P(Xess = yIX:) = P°(Xe,y)  (time-homogeneous)

Where F; is the information in the system up to time t (so that (X;) is
a (Ft)-adapted process).



Continuous Time Markov Chains

CTMCs are normally further required to have some path-wise
continuity properties, and are usually constructed via. rate-matrices
Q, representing the rate that a particle jumps between states. Q
satisfies

- Off-diagonal elements are nonnegative

- Rows sumto 0

P =1+eQ+o(e)



Continuous Time Markov Chains

Pe =14¢eQ+ o(e)
The generator of the process is

_ Ef(Xs) = f(Xo)Xo = X]
0

Lf(x)

which corresponds directly with Q.
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Markov Chain Monte Carlo

In MCMC, we want to draw samples from a stationary distribution,
typically one with many states, or compute expectations over them.
To do this, we construct dynamics that we know have the stationary
distribution and sample (Metropolis-Hastings).

Gibbs distribution:

B is a temperature parameter



Generalization

If £ is just any matrix with positive off-diagonal elements, we can
turn it into a rate matrix by taking from diagonal elements, so
without loss of generality we can solve

£76(0) + C()$(x) = ad(x) VxS

Where £ is a rate matrix.



Quasi-Stationary Distributions

What if (X;) takes values over S = D U 0D, and once particles enter
oD, they never leave? The chain is no longer irreducible, but we can
look at Quasi-Stationary Distributions (QSD):
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T=inf{t>0:X € 0D}
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Quasi-Stationary Distributions

What if (X;) takes values over S = D U 0D, and once particles enter
oD, they never leave? The chain is no longer irreducible, but we can
look at Quasi-Stationary Distributions (QSD):

P, (X € AlT > t) = v(A)

T=inf{t>0:X € 0D}

If c(x) = g(x,0D) and L is the generator for the process in D without
transitions into 9D, our QSD will solve

LXd(X) + c(X)o(x) = ap(x) x€D

for a maximal eigenvalue o and ||¢]js = 1.

Perron-Frobenius theorem: Existence & uniqueness.



Fleming-Viot Particle Systems

Several ways of estimating QSD. One is (based on) a Fleming-Viot
system, an Interacting Particle System:

- Take N particles distributed in D

- Evolve independently according to £

- When a particle is killed according to the killing rate c, resample
uniformly over the other N — 1 particles.



Metastability

Metastability: When there exist areas of the state space that do not

communicate well.
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Metastability

One way to overcome metastability when estimating Gibbs measures
is Parallel Tempering also called Replica Exchange MCMC.

- Swap a particle between different temperatures at appropriate
rates (maintaining stationary distributions).
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- Swap a particle between different temperatures at appropriate
rates (maintaining stationary distributions).
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Figure 1: Tempering in metallurgy [2]



Dual Problems

If £ is a generator for the process, c is the killing rate, h is the
normalizing term that turns £* to a rate matrix, and d = c + h, then
there are two eigenvalues associated with the QSD problem:

{—cw(x) + OB = M) 0

—L7p(x) + d(x)p(X) = Ap(x)
¢ is the QSD, that is computed with the dynamics of £ and killing c,

and v is a vector that represents the state-dependent exit/decay
rate, computed via the £* dynamics and killing by d.
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Swapping

The dynamics associated with £* are reversals of £, so we expect the
dynamics to spend more time in low energy areas of the state space,
exactly where the original chain does not explore.

Question: can we develop a swapping scheme that respects the
distribution of the independent forward/backward systems (¢ x 9)?



Swapping

Yes! Pair up particles, and swap them according to the rates

ey = e~ (VOO V()00

where ® and W are the energy potentials from (1), and ry, is the rate
that a pair at positions (x, y) is swapped to positions (y, x).

Theorem (Particle Swapping Rates)

o~ (W) +0()~ V() -4 ()* q(zi41,2)) _ 7y V1
ZI7ZI+T

m(X)

Where = is the stationary distribution in D prior to Rilling, and {z;}{ is
a path with positive probability from x to y, or alternatively a
sequence with q(z;,zj41) > 0 Yi € [n — 1] where x =z and z, = .



Improvements in Metastability

Energy Potential and cutoff for Well Well-to-Well Jumps per computation
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Figure 2: The well test for comparing metastability of chains
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From the literature [1], we have

Corollary (Uniform Consistency Bound)
We can find Ko, > 0 for which

K
sup sup B, [|m(m)() — m(m)Tepl] < =
£20 [0 <1 N
Furthermore, if n is distributed according to the stationary
distribution of the system ny, then there exist Ko > 0 and ~ > 0 such
that
Eflmn)(¢) —v(#)] < 5



Consistency (of swapping)

Conjecture _ _ _ -
If (n,w)an is distributed according to the invariant distribution of a

N-particle swapped Fleming-Viot system with swapping rate A with
first marginal na , then there exists a sequence (Ay) > 0, such that
Ay — oo and for any sequence By < Ay

im E{Im(ne, w)(¢) - v(2)l] = 0

forany ||¢|lee < 1.
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Infinite Swapping

The theory of two-time scale Markov processes asks what happens
when ST
Q=-0+Q
€
and e — 0.
To decompose the rates into dynamics/swapping, we need to define

a new variable, (S§”)) € {—1,1} representing the order of the pair n at
time t.

Why infinite swapping? Computational efficiency.



INS Algorithm

xy

Vxy = —7—7
Iy + Iy

- If (X, V)M = (x,y) then X moves through its dynamics to z with
rate
Vx,yQX,z + vy x Qz,x

- If (X, V)" = (x,y) then Y moves through its dynamics to z with
rate
V)ngz,y + Vyg(Qy,z



INS Algorithm

< If (X, V)M = (x,y), then X is killed with rate
Uy C(X) + vy xd(y)

Once killed, it chooses another pair uniformly, and then, if the
pair is at positions (g, p), it moves to g with probability v4 , and
p with probability vp 4

- Similar for Y

An asymptotically consistent estimator of the QSD ¢:

H) = = /t OZV 2 (A9) + vy 4080 () it
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Questions?
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