

Swapping Methods for Fleming-Viot Estimators of Quasi-Stationary Distributions

Itamar Fiorino Paul Dupuis – Advisor Kavita Ramanan – Second Reader

Brown University – Department of Applied Mathematics

Setup

Take a finite set |S|=d and linear operator (matrix) $\mathcal{L}:\mathbb{R}^d\to\mathbb{R}^d$ so that, as a matrix $\mathcal{L}=Q$, its entries are non-negative. Let \mathcal{L}^* be its adjoint (matrix transpose). Say we want to solve the finite-dimensional eigenvalue problem

$$\mathcal{L}^*\phi = \alpha\phi$$

for some maximal $\alpha > 0$ such that $\|\phi\|_1 = 1$.

1

Setup

Take a finite set |S|=d and linear operator (matrix) $\mathcal{L}:\mathbb{R}^d\to\mathbb{R}^d$ so that, as a matrix $\mathcal{L}=Q$, its entries are non-negative. Let \mathcal{L}^* be its adjoint (matrix transpose). Say we want to solve the finite-dimensional eigenvalue problem

$$\mathcal{L}^*\phi = \alpha\phi$$

for some maximal $\alpha > 0$ such that $||\phi||_1 = 1$.

These problems are amenable to computation from probabilistic methods, in particular through Markov Chain Monte Carlo (MCMC) methods.

1

A Continuous Time Markov Chain (CTMC) is (heuristically) a random process $(X_t)_{t>0}$ whose distribution in the future depends only on the present.

A Continuous Time Markov Chain (CTMC) is (heuristically) a random process $(X_t)_{t>0}$ whose distribution in the future depends only on the present.

A non-example would be the position of a particle shot out of a cannon, where the position and trajectory of the cannon are random.

A Continuous Time Markov Chain (CTMC) is (heuristically) a random process $(X_t)_{t>0}$ whose distribution in the future depends only on the present.

A non-example would be the position of a particle shot out of a cannon, where the position and trajectory of the cannon are random.

$$\mathbb{P}(X_{t+s} = y | \mathcal{F}_t) = \mathbb{P}(X_{t+s} = y | X_t) = P^s(X_t, y) \quad \text{ (time-homogeneous)}$$

Where \mathcal{F}_t is the information in the system up to time t (so that (X_t) is a (\mathcal{F}_t) -adapted process).

CTMCs are normally further required to have some path-wise continuity properties, and are usually constructed via. rate-matrices Q, representing the rate that a particle jumps between states. Q satisfies

- · Off-diagonal elements are nonnegative
- · Rows sum to 0

$$P^{\varepsilon} = I + \varepsilon Q + o(\varepsilon)$$

$$P^{\varepsilon} = I + \varepsilon Q + o(\varepsilon)$$

The generator of the process is

$$\mathcal{L}f(x) = \frac{\mathbb{E}\left[f(X_{\delta}) - f(X_{0})|X_{0} = x\right]}{\delta}$$

which corresponds directly with Q.

Markov Chain Monte Carlo

If $\mathcal L$ is a rate matrix, then the empirical measures of sample paths of chains with generator $\mathcal L$ approach the solution to

$$\mathcal{L}^*\phi = 0$$

These eigenvectors are exactly stationary distributions that satisfy.

$$\mathbb{P}_{\pi}(X_t \in A) = \pi(A)$$

Markov Chain Monte Carlo

If $\mathcal L$ is a rate matrix, then the empirical measures of sample paths of chains with generator $\mathcal L$ approach the solution to

$$\mathcal{L}^*\phi = 0$$

These eigenvectors are exactly stationary distributions that satisfy.

$$\mathbb{P}_{\pi}(X_t \in A) = \pi(A)$$

In MCMC, we want to draw samples from a stationary distribution, typically one with many states, or compute expectations over them. To do this, we construct dynamics that we know have the stationary distribution and sample (Metropolis-Hastings).

Markov Chain Monte Carlo

In MCMC, we want to draw samples from a stationary distribution, typically one with many states, or compute expectations over them. To do this, we construct dynamics that we know have the stationary distribution and sample (Metropolis-Hastings).

Gibbs distribution:

$$\phi \propto e^{-\frac{\Phi}{\beta}}$$

 β is a temperature parameter

Generalization

If $\mathcal L$ is just any matrix with positive off-diagonal elements, we can turn it into a rate matrix by taking from diagonal elements, so without loss of generality we can solve

$$\mathcal{L}^* \phi(x) + c(x)\phi(x) = \alpha \phi(x) \quad \forall x \in S$$

Where \mathcal{L} is a rate matrix.

Quasi-Stationary Distributions

What if (X_t) takes values over $S = D \cup \partial D$, and once particles enter ∂D , they never leave? The chain is no longer irreducible, but we can look at Quasi-Stationary Distributions (QSD):

$$\mathbb{P}_{\nu}(X_t \in A | \tau > t) = \nu(A)$$

$$\tau = \inf\{t > 0 : X_t \in \partial D\}$$

Quasi-Stationary Distributions

What if (X_t) takes values over $S = D \cup \partial D$, and once particles enter ∂D , they never leave? The chain is no longer irreducible, but we can look at Quasi-Stationary Distributions (QSD):

$$\mathbb{P}_{\nu}(X_t \in A | \tau > t) = \nu(A)$$

$$\tau = \inf\{t > 0 : X_t \in \partial D\}$$

If $c(x) = q(x, \partial D)$ and \mathcal{L} is the generator for the process in D without transitions into ∂D , our QSD will solve

$$\mathcal{L}^* \phi(x) + c(x)\phi(x) = \alpha \phi(x) \quad x \in D$$

for a maximal eigenvalue α and $\|\phi\|_1 = 1$.

7

Quasi-Stationary Distributions

What if (X_t) takes values over $S = D \cup \partial D$, and once particles enter ∂D , they never leave? The chain is no longer irreducible, but we can look at Quasi-Stationary Distributions (QSD):

$$\mathbb{P}_{\nu}(X_t \in A | \tau > t) = \nu(A)$$

$$\tau = \inf\{t > 0 : X_t \in \partial D\}$$

If $c(x) = q(x, \partial D)$ and \mathcal{L} is the generator for the process in D without transitions into ∂D , our QSD will solve

$$\mathcal{L}^* \phi(x) + c(x)\phi(x) = \alpha \phi(x) \quad x \in D$$

for a maximal eigenvalue α and $\|\phi\|_1 = 1$.

Perron-Frobenius theorem: Existence & uniqueness.

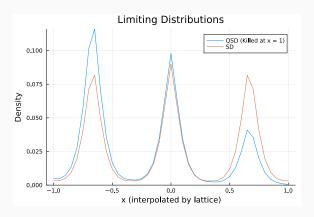
Fleming-Viot Particle Systems

Several ways of estimating QSD. One is (based on) a **Fleming-Viot** system, an **Interacting Particle System**:

- Take N particles distributed in D
- \cdot Evolve independently according to ${\cal L}$
- When a particle is killed according to the killing rate c, resample uniformly over the other N – 1 particles.

Metastability

Metastability: When there exist areas of the state space that do not communicate well.



Metastability

One way to overcome metastability when estimating Gibbs measures is **Parallel Tempering** also called **Replica Exchange MCMC**.

• Swap a particle between different temperatures at appropriate rates (maintaining stationary distributions).

Metastability

One way to overcome metastability when estimating Gibbs measures is **Parallel Tempering** also called **Replica Exchange MCMC**.

• Swap a particle between different temperatures at appropriate rates (maintaining stationary distributions).

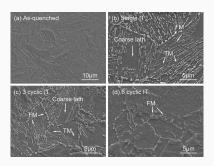


Figure 1: Tempering in metallurgy [2]

Dual Problems

If $\mathcal L$ is a generator for the process, c is the killing rate, h is the normalizing term that turns $\mathcal L^*$ to a rate matrix, and d=c+h, then there are two eigenvalues associated with the QSD problem:

$$\begin{cases} -\mathcal{L}\psi(x) + c(x)\psi(x) &= \lambda\psi(x) \\ -\mathcal{L}^*\phi(x) + d(x)\phi(x) &= \lambda\phi(x) \end{cases} \tag{1}$$

 ϕ is the QSD, that is computed with the dynamics of $\mathcal L$ and killing c, and ψ is a vector that represents the state-dependent exit/decay rate, computed via the $\mathcal L^*$ dynamics and killing by d.

Swapping

The dynamics associated with \mathcal{L}^* are reversals of \mathcal{L} , so we expect the dynamics to spend more time in low energy areas of the state space, exactly where the original chain does not explore.

Question: can we develop a swapping scheme that respects the distribution of the independent forward/backward systems ($\phi \times \psi$)?

Swapping

Yes! Pair up particles, and swap them according to the rates

$$r_{x,y} = e^{-(\Psi(y) + \Phi(x) - \Psi(x) - \Phi(y))^{+}}$$

where Φ and Ψ are the energy potentials from (1), and $r_{x,y}$ is the rate that a pair at positions (x,y) is swapped to positions (y,x).

Theorem (Particle Swapping Rates)

$$e^{-(\Psi(y)+\Phi(x)-\Psi(x)-\Phi(y))^{+}} = \left[\prod_{1}^{n} \frac{q(z_{i+1}, z_{i})}{q(z_{i}, z_{i+1})}\right] \vee 1 = \frac{\pi(y)}{\pi(x)} \vee 1$$

Where π is the stationary distribution in D prior to killing, and $\{z_i\}_1^n$ is a path with positive probability from x to y, or alternatively a sequence with $q(z_i, z_{i+1}) > 0 \ \forall i \in [n-1]$ where $x = z_1$ and $z_n = y$.

Improvements in Metastability

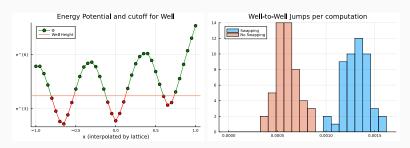


Figure 2: The well test for comparing metastability of chains

Consistency

From the literature [1], we have

Corollary (Uniform Consistency Bound) We can find $K_0, \gamma > 0$ for which

$$\sup_{t\geq 0}\sup_{\|\varphi\|_{\infty}\leq 1}\mathbb{E}_{\eta}\left[|m(\eta_{t})(\varphi)-m(\eta)T_{t}\varphi|\right]\leq \frac{K_{0}}{N^{\gamma}}$$

Furthermore, if η is distributed according to the stationary distribution of the system $\eta_{\rm N}$, then there exist ${\rm K_0}>0$ and $\gamma>0$ such that

$$\mathbb{E}\left[|m(\eta)(\varphi)-\nu(\varphi)\right]\leq \frac{K_0}{N^{\gamma}}$$

Consistency (of swapping)

Conjecture

If $(\eta, \eta)_{A,N}$ is distributed according to the invariant distribution of a N-particle swapped Fleming-Viot system with swapping rate A with first marginal $\eta_{A,N}$, then there exists a sequence $(A_N) > 0$, such that $A_N \to \infty$ and for any sequence $B_N \le A_N$

$$\lim_{N\to\infty} \mathbb{E}\left[|m(\eta_{B_N,N})(\varphi) - \nu(\varphi)|\right] = 0$$

for any $\|\varphi\|_{\infty} \leq 1$.

Infinite Swapping

The theory of two-time scale Markov processes asks what happens when

$$Q = \frac{1}{\varepsilon}\widetilde{Q} + \widehat{Q}$$

and $\varepsilon \to 0$.

Infinite Swapping

The theory of two-time scale Markov processes asks what happens when

$$Q = \frac{1}{\varepsilon}\widetilde{Q} + \widehat{Q}$$

and $\varepsilon \to 0$.

To decompose the rates into dynamics/swapping, we need to define a new variable, $(S_t^{(n)}) \in \{-1,1\}$ representing the order of the pair n at time t.

Infinite Swapping

The theory of two-time scale Markov processes asks what happens when

$$Q = \frac{1}{\varepsilon}\widetilde{Q} + \widehat{Q}$$

and $\varepsilon \to 0$.

To decompose the rates into dynamics/swapping, we need to define a new variable, $(S_t^{(n)}) \in \{-1,1\}$ representing the order of the pair n at time t.

Why infinite swapping? Computational efficiency.

INS Algorithm

$$\nu_{x,y} = \frac{r_{x,y}}{r_{x,y} + r_{y,x}}$$

• If $(X, Y)^{(n)} = (x, y)$ then X moves through its dynamics to z with rate

$$\nu_{X,y}Q_{X,Z} + \nu_{y,X}Q_{Z,X}$$

.

• If $(X, Y)^{(n)} = (x, y)$ then Y moves through its dynamics to z with rate

$$\nu_{\mathrm{X},\mathrm{y}} Q_{\mathrm{Z},\mathrm{y}} + \nu_{\mathrm{y},\mathrm{x}} Q_{\mathrm{y},\mathrm{z}}$$

.

INS Algorithm

• If $(X, Y)^{(n)} = (x, y)$, then X is killed with rate

$$\nu_{x,y}c(x) + \nu_{y,x}d(y)$$

Once killed, it chooses another pair uniformly, and then, if the pair is at positions (q, p), it moves to q with probability $\nu_{q,p}$ and p with probability $\nu_{p,q}$

· Similar for Y

An asymptotically consistent estimator of the QSD ϕ :

$$\phi(dx) = \frac{1}{TN} \int_{t=0}^{T} \sum_{n=1}^{N} \nu_{X_{t}^{(n)}, Y_{t}^{(n)}} \, \delta_{X_{t}^{(n)}}(dx) + \nu_{Y_{t}^{(n)}, X_{t}^{(n)}} \delta_{Y_{t}^{(n)}}(dx) \, dt$$

References i

B. Cloez and M.-N. Thai.

Quantitative results for the fleming-viot particle system and quasi-stationary distributions in discrete space.

Stochastic Processes and their Applications, 2014.

H. W. J. G. Wei Hou, Qingdong Liu.

Effect of cyclic intercritical tempering on the microstructure and mechanical properties of a low-carbon cu-bearing 7ni steel.

Metallurgical and Materials Transactions A, 2020.

Questions?